FrancescoBonzi commited on
Commit
bb1a5ec
·
1 Parent(s): 867396e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -11,10 +11,8 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,7 +20,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoProcessor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
+ processor = AutoProcessor.from_pretrained("FrancescoBonzi/speecht5_finetuned_voxpopuli_it")
15
+ model = SpeechT5ForTextToSpeech.from_pretrained("FrancescoBonzi/speecht5_finetuned_voxpopuli_it")
 
 
16
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
17
 
18
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
20
 
21
 
22
  def translate(audio):
23
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "it"})
24
  return outputs["text"]
25
 
26