Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
import torchio
|
7 |
+
import torch.nn as nn
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from monai.transforms import Compose, LoadImaged, Spacingd, CropForegroundd, SpatialPadd, CenterSpatialCropd
|
10 |
+
from monai.data import Dataset
|
11 |
+
from nnunet_mednext import create_mednext_encoder_v1
|
12 |
+
|
13 |
+
# Device selection
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
# Model definition
|
17 |
+
class MedNeXtEncReg(nn.Module):
|
18 |
+
def __init__(self):
|
19 |
+
super(MedNeXtEncReg, self).__init__()
|
20 |
+
self.mednextv1 = create_mednext_encoder_v1(
|
21 |
+
num_input_channels=1, num_classes=1, model_id='B', kernel_size=3, deep_supervision=True
|
22 |
+
)
|
23 |
+
self.global_avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
|
24 |
+
self.regression_fc = nn.Sequential(
|
25 |
+
nn.Linear(512, 64),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.Dropout(0.0),
|
28 |
+
nn.Linear(64, 1)
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.mednextv1(x)
|
33 |
+
x = self.global_avg_pool(x)
|
34 |
+
x = torch.flatten(x, start_dim=1)
|
35 |
+
age_estimate = self.regression_fc(x)
|
36 |
+
return age_estimate.squeeze()
|
37 |
+
|
38 |
+
# Download the model from Hugging Face Hub
|
39 |
+
def initialize_model():
|
40 |
+
model_paths = [
|
41 |
+
hf_hub_download(repo_id="FrancescoLR/BrainAgeNeXt", filename=f"BrainAge_{i}.pth") for i in range(1, 6)
|
42 |
+
]
|
43 |
+
|
44 |
+
models = []
|
45 |
+
for model_path in model_paths:
|
46 |
+
model = MedNeXtEncReg().to(device)
|
47 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
48 |
+
model.eval()
|
49 |
+
models.append(model)
|
50 |
+
return models
|
51 |
+
|
52 |
+
# Define preprocessing transforms
|
53 |
+
def prepare_transforms():
|
54 |
+
return Compose([
|
55 |
+
LoadImaged(keys=["image"], ensure_channel_first=True),
|
56 |
+
Spacingd(keys=["image"], pixdim=(1.0, 1.0, 1.0)),
|
57 |
+
CropForegroundd(keys=["image"], allow_smaller=True, source_key="image"),
|
58 |
+
SpatialPadd(keys=["image"], spatial_size=(160, 192, 160)),
|
59 |
+
CenterSpatialCropd(keys=["image"], roi_size=(160, 192, 160)),
|
60 |
+
torchio.transforms.ZNormalization(masking_method=lambda x: x > 0, keys=["image"])
|
61 |
+
])
|
62 |
+
|
63 |
+
# Process uploaded MRI scan
|
64 |
+
def preprocess_mri(mri_path):
|
65 |
+
transforms = prepare_transforms()
|
66 |
+
data_dict = {"image": mri_path}
|
67 |
+
dataset = Dataset([data_dict], transform=transforms)
|
68 |
+
dataloader = DataLoader(dataset, batch_size=1, num_workers=0)
|
69 |
+
return next(iter(dataloader))["image"].to(device)
|
70 |
+
|
71 |
+
# Predict brain age
|
72 |
+
def predict_brain_age(mri_path, actual_age, sex):
|
73 |
+
if not os.path.exists(mri_path):
|
74 |
+
return "Error: MRI file not found"
|
75 |
+
|
76 |
+
# Load the model
|
77 |
+
models = initialize_model()
|
78 |
+
|
79 |
+
# Preprocess MRI
|
80 |
+
image = preprocess_mri(mri_path)
|
81 |
+
|
82 |
+
# Run predictions
|
83 |
+
predictions = []
|
84 |
+
with torch.no_grad():
|
85 |
+
for model in models:
|
86 |
+
pred = model(image)
|
87 |
+
predictions.append(pred.cpu().numpy())
|
88 |
+
|
89 |
+
# Compute median brain age prediction
|
90 |
+
predicted_brain_age = np.median(np.stack(predictions))
|
91 |
+
|
92 |
+
# Apply correction based on actual age
|
93 |
+
predicted_brain_age_corrected = (
|
94 |
+
predicted_brain_age + (actual_age * 0.062) - 2.96 if actual_age > 18 else predicted_brain_age
|
95 |
+
)
|
96 |
+
|
97 |
+
brain_age_difference = predicted_brain_age_corrected - actual_age
|
98 |
+
|
99 |
+
# Output results
|
100 |
+
return f"Predicted Brain Age: {predicted_brain_age_corrected:.2f} years", \
|
101 |
+
f"Brain Age Difference (BAD): {brain_age_difference:.2f} years"
|
102 |
+
|
103 |
+
# Gradio UI
|
104 |
+
iface = gr.Interface(
|
105 |
+
fn=predict_brain_age,
|
106 |
+
inputs=[
|
107 |
+
gr.File(label="Upload MRI (NIfTI .nii.gz)"),
|
108 |
+
gr.Number(label="Enter Age"),
|
109 |
+
gr.Radio(["Male", "Female"], label="Select Sex")
|
110 |
+
],
|
111 |
+
outputs=[
|
112 |
+
gr.Textbox(label="Predicted Brain Age"),
|
113 |
+
gr.Textbox(label="Brain Age Difference (BAD)")
|
114 |
+
],
|
115 |
+
title="Brain Age Prediction with MedNeXt",
|
116 |
+
description="Upload an MRI scan (.nii.gz), enter your age and sex, and get a brain age prediction.",
|
117 |
+
theme="default"
|
118 |
+
)
|
119 |
+
|
120 |
+
# Launch the Gradio app
|
121 |
+
if __name__ == "__main__":
|
122 |
+
iface.launch()
|