FLAMeS / app.py
FrancescoLR's picture
Updated app.py
4d847b9
raw
history blame
2.56 kB
import gradio as gr
import subprocess
import os
import shutil
import os
from huggingface_hub import hf_hub_download
# Define paths
MODEL_DIR = "./model" # Local directory to store the downloaded model
DATASET_DIR = os.path.join(MODEL_DIR, "Dataset004_WML") # Directory for Dataset004_WML
INPUT_DIR = "/tmp/input"
OUTPUT_DIR = "/tmp/output"
# Hugging Face Model Repository
REPO_ID = "FrancescoLR/FLAMeS-model" # Replace with your actual model repository ID
# Function to download the Dataset004_WML folder
def download_model():
if not os.path.exists(DATASET_DIR):
os.makedirs(DATASET_DIR, exist_ok=True)
print("Downloading Dataset004_WML.zip...")
zip_path = hf_hub_download(repo_id=REPO_ID, filename="Dataset004_WML.zip", cache_dir=MODEL_DIR)
subprocess.run(["unzip", "-o", zip_path, "-d", MODEL_DIR])
print("Dataset004_WML downloaded and extracted.")
# Function to run nnUNet inference
def run_nnunet_predict(nifti_file):
# Prepare directories
os.makedirs(INPUT_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Save the uploaded file to the input directory
input_path = os.path.join(INPUT_DIR, "image.nii.gz")
os.rename(nifti_file.name, input_path) # Move the uploaded file to the expected input location
# Set environment variables for nnUNet
os.environ["nnUNet_raw"] = DATASET_DIR
os.environ["nnUNet_preprocessed"] = DATASET_DIR
os.environ["nnUNet_results"] = DATASET_DIR
# Construct and run the nnUNetv2_predict command
command = [
"nnUNetv2_predict",
"-i", INPUT_DIR,
"-o", OUTPUT_DIR,
"-d", "004", # Dataset ID
"-c", "3d_fullres", # Configuration
"-tr", "nnUNetTrainer_8000epochs", # Trainer name
]
try:
subprocess.run(command, check=True)
# Get the output file
output_file = os.path.join(OUTPUT_DIR, "image.nii.gz")
return output_file
except subprocess.CalledProcessError as e:
return f"Error: {e}"
# Gradio Interface
interface = gr.Interface(
fn=run_nnunet_predict,
inputs=gr.File(label="Upload FLAIR Image (.nii.gz)"),
outputs=gr.File(label="Download Segmentation Mask"),
title="FLAMeS: Multiple Sclerosis Lesion Segmentation",
description="Upload a skull-stripped FLAIR image (.nii.gz) to generate a binary segmentation of MS lesions."
)
# Download model files before launching the app
download_model()
# Launch the app
if __name__ == "__main__":
interface.launch(share=True)