Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
1d7bf30
1
Parent(s):
6670942
Updated app.py
Browse files
app.py
CHANGED
@@ -29,16 +29,30 @@ def download_model():
|
|
29 |
def extract_middle_slice(nifti_path, output_image_path):
|
30 |
"""
|
31 |
Extracts a middle slice from a 3D NIfTI image and saves it as a PNG file.
|
|
|
32 |
"""
|
|
|
|
|
|
|
|
|
33 |
img = nib.load(nifti_path)
|
34 |
data = img.get_fdata()
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
plt.axis("off")
|
39 |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
|
40 |
plt.close()
|
41 |
-
|
42 |
# Function to run nnUNet inference
|
43 |
@spaces.GPU # Decorate the function to allocate GPU for its execution
|
44 |
def run_nnunet_predict(nifti_file):
|
@@ -100,9 +114,9 @@ interface = gr.Interface(
|
|
100 |
fn=run_nnunet_predict,
|
101 |
inputs=gr.File(label="Upload FLAIR Image (.nii.gz)"),
|
102 |
outputs=[
|
|
|
103 |
gr.Image(label="Input Middle Slice"),
|
104 |
-
gr.Image(label="Output Middle Slice")
|
105 |
-
gr.File(label="Download Segmentation Mask")
|
106 |
],
|
107 |
title="FLAMeS: Multiple Sclerosis Lesion Segmentation",
|
108 |
description="Upload a skull-stripped FLAIR image (.nii.gz) to generate a binary segmentation of MS lesions."
|
|
|
29 |
def extract_middle_slice(nifti_path, output_image_path):
|
30 |
"""
|
31 |
Extracts a middle slice from a 3D NIfTI image and saves it as a PNG file.
|
32 |
+
The figure size is adjusted dynamically based on the slice's aspect ratio.
|
33 |
"""
|
34 |
+
import nibabel as nib
|
35 |
+
import matplotlib.pyplot as plt
|
36 |
+
|
37 |
+
# Load NIfTI image and get the data
|
38 |
img = nib.load(nifti_path)
|
39 |
data = img.get_fdata()
|
40 |
+
|
41 |
+
# Get the middle slice along the z-axis
|
42 |
+
middle_slice_index = data.shape[2] // 2
|
43 |
+
slice_data = data[:, :, middle_slice_index]
|
44 |
+
|
45 |
+
# Calculate aspect ratio
|
46 |
+
height, width = slice_data.shape
|
47 |
+
aspect_ratio = width / height
|
48 |
+
|
49 |
+
# Dynamically adjust figure size based on aspect ratio
|
50 |
+
plt.figure(figsize=(6 * aspect_ratio, 6)) # Height fixed to 6, width scaled by aspect ratio
|
51 |
+
plt.imshow(slice_data, cmap="gray")
|
52 |
plt.axis("off")
|
53 |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
|
54 |
plt.close()
|
55 |
+
|
56 |
# Function to run nnUNet inference
|
57 |
@spaces.GPU # Decorate the function to allocate GPU for its execution
|
58 |
def run_nnunet_predict(nifti_file):
|
|
|
114 |
fn=run_nnunet_predict,
|
115 |
inputs=gr.File(label="Upload FLAIR Image (.nii.gz)"),
|
116 |
outputs=[
|
117 |
+
gr.File(label="Download Segmentation Mask"),
|
118 |
gr.Image(label="Input Middle Slice"),
|
119 |
+
gr.Image(label="Output Middle Slice")
|
|
|
120 |
],
|
121 |
title="FLAMeS: Multiple Sclerosis Lesion Segmentation",
|
122 |
description="Upload a skull-stripped FLAIR image (.nii.gz) to generate a binary segmentation of MS lesions."
|