FrancescoLR commited on
Commit
44da582
·
verified ·
1 Parent(s): d9fd063

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -8
app.py CHANGED
@@ -32,6 +32,9 @@ def extract_middle_slices(nifti_path, output_image_path):
32
  Extracts middle slices from a 3D NIfTI image in axial, coronal, and sagittal planes
33
  and saves them as a single PNG file with subplots.
34
  """
 
 
 
35
 
36
  # Load NIfTI image and get the data
37
  img = nib.load(nifti_path)
@@ -43,9 +46,16 @@ def extract_middle_slices(nifti_path, output_image_path):
43
  middle_sagittal = data[data.shape[0] // 2, :, :] # Sagittal (x-axis)
44
 
45
  # Rotate slices for proper orientation
46
- middle_axial = np.rot90(middle_axial, k=-1)
47
- middle_coronal = np.rot90(middle_coronal, k=-1)
48
- middle_sagittal = np.rot90(middle_sagittal, k=-1)
 
 
 
 
 
 
 
49
 
50
  # Create subplots
51
  fig, axes = plt.subplots(1, 3, figsize=(12, 4)) # 3 subplots in a row
@@ -53,15 +63,12 @@ def extract_middle_slices(nifti_path, output_image_path):
53
  # Plot each slice
54
  axes[0].imshow(middle_axial, cmap="gray")
55
  axes[0].axis("off")
56
- axes[0].set_title("Axial")
57
 
58
  axes[1].imshow(middle_coronal, cmap="gray")
59
  axes[1].axis("off")
60
- axes[1].set_title("Coronal")
61
 
62
- axes[2].imshow(middle_sagittal, cmap="gray")
63
  axes[2].axis("off")
64
- axes[2].set_title("Sagittal")
65
 
66
  # Save the figure
67
  plt.tight_layout()
@@ -69,7 +76,6 @@ def extract_middle_slices(nifti_path, output_image_path):
69
  plt.close()
70
 
71
 
72
-
73
  # Function to run nnUNet inference
74
  @spaces.GPU # Decorate the function to allocate GPU for its execution
75
  def run_nnunet_predict(nifti_file):
 
32
  Extracts middle slices from a 3D NIfTI image in axial, coronal, and sagittal planes
33
  and saves them as a single PNG file with subplots.
34
  """
35
+ import nibabel as nib
36
+ import matplotlib.pyplot as plt
37
+ import numpy as np
38
 
39
  # Load NIfTI image and get the data
40
  img = nib.load(nifti_path)
 
46
  middle_sagittal = data[data.shape[0] // 2, :, :] # Sagittal (x-axis)
47
 
48
  # Rotate slices for proper orientation
49
+ middle_axial = np.rot90(middle_axial, k=-1) # Rotate 90 degrees clockwise
50
+ middle_coronal = np.rot90(middle_coronal, k=2) # Rotate 180 degrees
51
+ middle_sagittal = np.flipud(np.rot90(middle_sagittal, k=-1)) # Rotate 90 degrees clockwise and flip up-down
52
+
53
+ # Pad sagittal slice to match dimensions of other slices
54
+ max_height = max(middle_axial.shape[0], middle_sagittal.shape[0])
55
+ max_width = max(middle_axial.shape[1], middle_sagittal.shape[1])
56
+
57
+ padded_sagittal = np.zeros((max_height, max_width))
58
+ padded_sagittal[:middle_sagittal.shape[0], :middle_sagittal.shape[1]] = middle_sagittal
59
 
60
  # Create subplots
61
  fig, axes = plt.subplots(1, 3, figsize=(12, 4)) # 3 subplots in a row
 
63
  # Plot each slice
64
  axes[0].imshow(middle_axial, cmap="gray")
65
  axes[0].axis("off")
 
66
 
67
  axes[1].imshow(middle_coronal, cmap="gray")
68
  axes[1].axis("off")
 
69
 
70
+ axes[2].imshow(padded_sagittal, cmap="gray")
71
  axes[2].axis("off")
 
72
 
73
  # Save the figure
74
  plt.tight_layout()
 
76
  plt.close()
77
 
78
 
 
79
  # Function to run nnUNet inference
80
  @spaces.GPU # Decorate the function to allocate GPU for its execution
81
  def run_nnunet_predict(nifti_file):