Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
7801205
1
Parent(s):
73146f8
First commit
Browse files- README.md +1 -14
- app.py +59 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,14 +1 @@
|
|
1 |
-
|
2 |
-
title: FLAMeS
|
3 |
-
emoji: 🏃
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: red
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.9.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: gpl-3.0
|
11 |
-
short_description: Automated segmentation of MS lesions
|
12 |
-
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
Tool for the automated segmentation of multiple sclerosis lesions from diverse FLAIR scans.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
# Paths
|
7 |
+
INPUT_DIR = "/tmp/input"
|
8 |
+
OUTPUT_DIR = "/tmp/output"
|
9 |
+
MODEL_DIR = "./model"
|
10 |
+
|
11 |
+
def run_nnunet_predict(nifti_file):
|
12 |
+
# Prepare directories
|
13 |
+
os.makedirs(INPUT_DIR, exist_ok=True)
|
14 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
15 |
+
|
16 |
+
# Save the uploaded file to the input directory
|
17 |
+
input_path = os.path.join(INPUT_DIR, "image.nii.gz")
|
18 |
+
shutil.copy(nifti_file.name, input_path)
|
19 |
+
|
20 |
+
# Set environment variables for nnUNet
|
21 |
+
os.environ["nnUNet_raw"] = MODEL_DIR
|
22 |
+
os.environ["nnUNet_preprocessed"] = MODEL_DIR
|
23 |
+
os.environ["nnUNet_results"] = MODEL_DIR
|
24 |
+
|
25 |
+
# Construct the nnUNetv2_predict command
|
26 |
+
command = [
|
27 |
+
"nnUNetv2_predict",
|
28 |
+
"-i", INPUT_DIR,
|
29 |
+
"-o", OUTPUT_DIR,
|
30 |
+
"-d", "004", # Dataset ID
|
31 |
+
"-c", "3d_fullres", # Configuration
|
32 |
+
"-tr", "nnUNetTrainer_8000epochs", # Trainer name
|
33 |
+
]
|
34 |
+
|
35 |
+
# Run the command
|
36 |
+
try:
|
37 |
+
subprocess.run(command, check=True)
|
38 |
+
# Get the output file
|
39 |
+
output_file = os.path.join(OUTPUT_DIR, "image.nii.gz")
|
40 |
+
return output_file
|
41 |
+
except subprocess.CalledProcessError as e:
|
42 |
+
return f"Error: {e}"
|
43 |
+
|
44 |
+
# Gradio Interface
|
45 |
+
interface = gr.Interface(
|
46 |
+
fn=run_nnunet_predict,
|
47 |
+
inputs=gr.File(label="Upload FLAIR Image (.nii.gz)"),
|
48 |
+
outputs=gr.File(label="Download Segmentation Mask"),
|
49 |
+
title="FLAMeS: FLAIR Lesion Analysis in Multiple Sclerosis",
|
50 |
+
description=(
|
51 |
+
"Upload a skull-stripped FLAIR image (.nii.gz) to generate a binary segmentation of MS lesions. "
|
52 |
+
"This model uses nnUNetv2 for inference with ensemble predictions."
|
53 |
+
),
|
54 |
+
)
|
55 |
+
|
56 |
+
# Launch the app
|
57 |
+
if __name__ == "__main__":
|
58 |
+
interface.launch()
|
59 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
nnunetv2
|
4 |
+
nibabel
|
5 |
+
numpy
|