Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -27,38 +27,49 @@ def download_model():
|
|
27 |
subprocess.run(["unzip", "-o", zip_path, "-d", MODEL_DIR])
|
28 |
print("Dataset004_WML downloaded and extracted.")
|
29 |
|
30 |
-
def
|
31 |
"""
|
32 |
-
Extracts
|
33 |
-
|
34 |
-
and scaled to be 50% smaller.
|
35 |
"""
|
36 |
-
import nibabel as nib
|
37 |
-
import matplotlib.pyplot as plt
|
38 |
|
39 |
# Load NIfTI image and get the data
|
40 |
img = nib.load(nifti_path)
|
41 |
data = img.get_fdata()
|
42 |
-
|
43 |
-
# Get the middle slice along the z-axis
|
44 |
-
middle_slice_index = data.shape[2] // 2
|
45 |
-
slice_data = data[:, :, middle_slice_index]
|
46 |
-
|
47 |
-
# Rotate the slice 90 degrees clockwise
|
48 |
-
slice_data = np.rot90(slice_data, k=-1)
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
|
59 |
plt.close()
|
60 |
|
61 |
|
|
|
62 |
# Function to run nnUNet inference
|
63 |
@spaces.GPU # Decorate the function to allocate GPU for its execution
|
64 |
def run_nnunet_predict(nifti_file):
|
|
|
27 |
subprocess.run(["unzip", "-o", zip_path, "-d", MODEL_DIR])
|
28 |
print("Dataset004_WML downloaded and extracted.")
|
29 |
|
30 |
+
def extract_middle_slices(nifti_path, output_image_path):
|
31 |
"""
|
32 |
+
Extracts middle slices from a 3D NIfTI image in axial, coronal, and sagittal planes
|
33 |
+
and saves them as a single PNG file with subplots.
|
|
|
34 |
"""
|
|
|
|
|
35 |
|
36 |
# Load NIfTI image and get the data
|
37 |
img = nib.load(nifti_path)
|
38 |
data = img.get_fdata()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Get middle slices along the three planes
|
41 |
+
middle_axial = data[:, :, data.shape[2] // 2] # Axial (z-axis)
|
42 |
+
middle_coronal = data[:, data.shape[1] // 2, :] # Coronal (y-axis)
|
43 |
+
middle_sagittal = data[data.shape[0] // 2, :, :] # Sagittal (x-axis)
|
44 |
+
|
45 |
+
# Rotate slices for proper orientation
|
46 |
+
middle_axial = np.rot90(middle_axial, k=-1)
|
47 |
+
middle_coronal = np.rot90(middle_coronal, k=-1)
|
48 |
+
middle_sagittal = np.rot90(middle_sagittal, k=-1)
|
49 |
+
|
50 |
+
# Create subplots
|
51 |
+
fig, axes = plt.subplots(1, 3, figsize=(12, 4)) # 3 subplots in a row
|
52 |
|
53 |
+
# Plot each slice
|
54 |
+
axes[0].imshow(middle_axial, cmap="gray")
|
55 |
+
axes[0].axis("off")
|
56 |
+
axes[0].set_title("Axial")
|
57 |
+
|
58 |
+
axes[1].imshow(middle_coronal, cmap="gray")
|
59 |
+
axes[1].axis("off")
|
60 |
+
axes[1].set_title("Coronal")
|
61 |
+
|
62 |
+
axes[2].imshow(middle_sagittal, cmap="gray")
|
63 |
+
axes[2].axis("off")
|
64 |
+
axes[2].set_title("Sagittal")
|
65 |
+
|
66 |
+
# Save the figure
|
67 |
+
plt.tight_layout()
|
68 |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
|
69 |
plt.close()
|
70 |
|
71 |
|
72 |
+
|
73 |
# Function to run nnUNet inference
|
74 |
@spaces.GPU # Decorate the function to allocate GPU for its execution
|
75 |
def run_nnunet_predict(nifti_file):
|