Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -269,8 +269,11 @@ def run_nnunet_predict(nifti_file,hd_bet=False):
|
|
269 |
image = extract_middle_slices(input_path, input_slice_path, center=center)
|
270 |
labeled_mask = extract_middle_slices(new_output_file, output_slice_path, center=center, label_components=True)
|
271 |
|
|
|
|
|
|
|
272 |
labeled_mask_path = os.path.join(OUTPUT_DIR, f"{base_filename}_LabeledClusters.nii.gz")
|
273 |
-
nib.save(nib.Nifti1Image(labeled_mask.astype(np.int16),
|
274 |
|
275 |
# Return paths for the Gradio interface
|
276 |
return new_output_file, input_slice_path, output_slice_path, labeled_mask_path
|
@@ -302,9 +305,10 @@ with gr.Blocks() as demo:
|
|
302 |
submit_button = gr.Button("Submit")
|
303 |
with gr.Column(scale=2):
|
304 |
seg_output = gr.File(label="Download the Lesion Segmentation Mask")
|
|
|
305 |
input_img = gr.Image(label="Input: FLAIR image")
|
306 |
output_img = gr.Image(label="Output: Binary Lesion Mask")
|
307 |
-
|
308 |
|
309 |
gr.Markdown("""
|
310 |
**If you find this tool useful, please consider citing:**
|
|
|
269 |
image = extract_middle_slices(input_path, input_slice_path, center=center)
|
270 |
labeled_mask = extract_middle_slices(new_output_file, output_slice_path, center=center, label_components=True)
|
271 |
|
272 |
+
# Load the binary lesion mask to get its affine
|
273 |
+
output_img = nib.load(new_output_file)
|
274 |
+
|
275 |
labeled_mask_path = os.path.join(OUTPUT_DIR, f"{base_filename}_LabeledClusters.nii.gz")
|
276 |
+
nib.save(nib.Nifti1Image(labeled_mask.astype(np.int16), output_img.affine), labeled_mask_path)
|
277 |
|
278 |
# Return paths for the Gradio interface
|
279 |
return new_output_file, input_slice_path, output_slice_path, labeled_mask_path
|
|
|
305 |
submit_button = gr.Button("Submit")
|
306 |
with gr.Column(scale=2):
|
307 |
seg_output = gr.File(label="Download the Lesion Segmentation Mask")
|
308 |
+
clusters_output = gr.File(label="Download the Labeled Lesion Segmentation Mask")
|
309 |
input_img = gr.Image(label="Input: FLAIR image")
|
310 |
output_img = gr.Image(label="Output: Binary Lesion Mask")
|
311 |
+
|
312 |
|
313 |
gr.Markdown("""
|
314 |
**If you find this tool useful, please consider citing:**
|