import gradio as gr import subprocess import os import shutil from huggingface_hub import hf_hub_download import torch import nibabel as nib import matplotlib as mpl import matplotlib.pyplot as plt import spaces # Import spaces for GPU decoration import numpy as np from scipy.ndimage import center_of_mass, zoom, label, generate_binary_structure # Define paths MODEL_DIR = "./model" # Local directory to store the downloaded model DATASET_DIR = os.path.join(MODEL_DIR, "Dataset004_WML") # Directory for Dataset004_WML INPUT_DIR = "/tmp/input" OUTPUT_DIR = "/tmp/output" # Hugging Face Model Repository REPO_ID = "FrancescoLR/FLAMeS-model" # Replace with your actual model repository ID import os import subprocess def setup_hd_bet(repo_dir="./HD-BET"): """ Clones the HD-BET repository and installs it in editable mode using pip. Parameters: repo_dir (str): Directory where HD-BET will be cloned and installed. """ if not os.path.exists(repo_dir): print("Cloning HD-BET repository...") subprocess.run(["git", "clone", "https://github.com/MIC-DKFZ/HD-BET", repo_dir], check=True) else: print("HD-BET repository already exists.") # Install the HD-BET package from source print("Installing HD-BET using pip...") subprocess.run(["pip", "install", "-e", "."], cwd=repo_dir, check=True) # Function to download the Dataset004_WML folder def download_model(): if not os.path.exists(DATASET_DIR): os.makedirs(DATASET_DIR, exist_ok=True) print("Downloading Dataset004_WML.zip...") zip_path = hf_hub_download(repo_id=REPO_ID, filename="Dataset004_WML.zip", cache_dir=MODEL_DIR) subprocess.run(["unzip", "-o", zip_path, "-d", MODEL_DIR]) print("Dataset004_WML downloaded and extracted.") def resample_to_isotropic(data, affine, target_spacing=1.0): """ Resamples a 3D NIfTI image to isotropic voxel size. Parameters: data (numpy.ndarray): The input 3D image data. affine (numpy.ndarray): The affine transformation matrix. target_spacing (float): Desired isotropic voxel spacing (in mm). Returns: resampled_data (numpy.ndarray): Resampled image data. resampled_affine (numpy.ndarray): Updated affine matrix. """ # Extract current voxel dimensions from the affine matrix current_spacing = np.sqrt((affine[:3, :3] ** 2).sum(axis=0)) # Compute the scaling factors for resampling scaling_factors = current_spacing / target_spacing # Resample the data using zoom resampled_data = zoom(data, zoom=scaling_factors, order=1) # Linear interpolation # Update the affine matrix to reflect the new voxel dimensions resampled_affine = affine.copy() resampled_affine[:3, :3] /= scaling_factors[:, np.newaxis] return resampled_data, resampled_affine def extract_middle_slices(nifti_path, output_image_path, slice_size=180): """ Extracts slices centered around the center of mass of non-zero voxels in a 3D NIfTI image. The slices are taken along axial, coronal, and sagittal planes and saved as a single PNG. """ # Load NIfTI image img = nib.load(nifti_path) data = img.get_fdata() affine = img.affine # Resample the image to 1 mm isotropic resampled_data, _ = resample_to_isotropic(data, affine, target_spacing=1.0) # Compute the center of mass of non-zero voxels com = center_of_mass(resampled_data > 0) center = np.round(com).astype(int) # Define half the slice size half_size = slice_size // 2 def extract_middle_slices(nifti_path, output_image_path, slice_size=180, center=None, label_components=False): """ Extracts slices from a 3D NIfTI image. If label_components=True, it assigns different labels (colors) to each connected component (26-connectivity) and returns the labeled 3D mask. Returns: labeled_data (np.ndarray): The 3D array (either labeled or original). """ # Load NIfTI image img = nib.load(nifti_path) data = img.get_fdata() affine = img.affine # Resample the image to 1 mm isotropic resampled_data, _ = resample_to_isotropic(data, affine, target_spacing=1.0) # Optionally label connected components if label_components: structure = generate_binary_structure(3, 3) # 3D, 26-connectivity labeled_data, num_features = label(data > 0, structure=structure) labeled_data_resampled, num_features = label(resampled_data > 0, structure=structure) else: labeled_data = resampled_data num_features = None # Not needed if we're not labeling labeled_data_resampled = resampled_data # Compute or reuse the center of mass if center is None: com = center_of_mass(labeled_data_resampled > 0) center = np.round(com).astype(int) # Define half the slice size half_size = slice_size // 2 # Function to extract and pad slices def extract_2d_slice(data, center, axis): slices = [slice(None)] * 3 slices[axis] = center[axis] extracted_slice = data[tuple(slices)] remaining_axes = [i for i in range(3) if i != axis] cropped_slice = extracted_slice[ max(center[remaining_axes[0]] - half_size, 0):min(center[remaining_axes[0]] + half_size, extracted_slice.shape[0]), max(center[remaining_axes[1]] - half_size, 0):min(center[remaining_axes[1]] + half_size, extracted_slice.shape[1]), ] pad_height = slice_size - cropped_slice.shape[0] pad_width = slice_size - cropped_slice.shape[1] padded_slice = np.pad(cropped_slice, ((pad_height // 2, pad_height - pad_height // 2), (pad_width // 2, pad_width - pad_width // 2)), mode='constant', constant_values=0) return padded_slice # Extract slices axial_slice = extract_2d_slice(labeled_data_resampled, center, axis=2) coronal_slice = extract_2d_slice(labeled_data_resampled, center, axis=1) sagittal_slice = extract_2d_slice(labeled_data_resampled, center, axis=0) # Apply rotations axial_slice = np.rot90(axial_slice, k=-1) coronal_slice = np.rot90(coronal_slice, k=1) coronal_slice = np.rot90(coronal_slice, k=2) sagittal_slice = np.rot90(sagittal_slice, k=1) sagittal_slice = np.rot90(sagittal_slice, k=2) # Create subplots fig, axes = plt.subplots(1, 3, figsize=(12, 4)) # Choose colormap if label_components: # Create 256 pastel colors pastel = plt.cm.Pastel1(np.linspace(0, 1, 256)) np.random.seed(42) # For reproducibility shuffled_colors = pastel[1:].copy() np.random.shuffle(shuffled_colors) final_colors = np.vstack([np.array([0, 0, 0, 1]), shuffled_colors]) custom_cmap = mpl.colors.ListedColormap(final_colors) cmap = custom_cmap # Colorful vmin = 0 vmax = num_features else: cmap = "gray" # Normal vmin = None vmax = None # Plot slices for idx, slice_data in enumerate([axial_slice, coronal_slice, sagittal_slice]): ax = axes[idx] im = ax.imshow(slice_data, cmap=cmap, origin="lower", vmin=vmin, vmax=vmax) ax.axis("off") # Save figure plt.tight_layout() plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0) plt.close() # Return the labeled mask return labeled_data # Function to run nnUNet inference @spaces.GPU(duration=90) # Decorate the function to allocate GPU for its execution def run_nnunet_predict(nifti_file,hd_bet=False): # Prepare directories os.makedirs(INPUT_DIR, exist_ok=True) os.makedirs(OUTPUT_DIR, exist_ok=True) # Extract the original filename without the extension original_filename = os.path.basename(nifti_file.name) base_filename = original_filename.replace(".nii.gz", "") # Save the uploaded file to the input directory input_path = os.path.join(INPUT_DIR, "image_0000.nii.gz") os.rename(nifti_file.name, input_path) # Move the uploaded file to the expected input location if hd_bet: # Apply skull-stripping with HD-BET hd_bet_output_path = os.path.join(INPUT_DIR, "image_0000.nii.gz") try: subprocess.run([ "hd-bet", "-i", input_path, "-o", hd_bet_output_path, "-device", "cuda", # or "cpu" "--disable_tta" ], check=True) print("Skull-stripping completed.") input_path = hd_bet_output_path except subprocess.CalledProcessError as e: return f"HD-BET Error: {e}" # Debugging: List files in the /tmp/input directory print("Files in /tmp/input:") print(os.listdir(INPUT_DIR)) # Set environment variables for nnUNet os.environ["nnUNet_results"] = MODEL_DIR # Construct and run the nnUNetv2_predict command command = [ "nnUNetv2_predict", "-i", INPUT_DIR, "-o", OUTPUT_DIR, "-d", "004", # Dataset ID "-c", "3d_fullres", # Configuration "-tr", "nnUNetTrainer_8000epochs", "-device", "cuda", # Explicitly use GPU ] print("Files in /tmp/output:") print(os.listdir(OUTPUT_DIR)) try: subprocess.run(command, check=True) # Rename the output file to match the original input filename output_file = os.path.join(OUTPUT_DIR, "image.nii.gz") new_output_file = os.path.join(OUTPUT_DIR, f"{base_filename}_LesionMask.nii.gz") if os.path.exists(output_file): os.rename(output_file, new_output_file) # Compute center of mass for the input image img = nib.load(input_path) data = img.get_fdata() affine = img.affine resampled_data, _ = resample_to_isotropic(data, affine, target_spacing=1.0) com = center_of_mass(resampled_data > 0) # Center of mass center = np.round(com).astype(int) # Round to integer # Extract and save 2D slices input_slice_path = os.path.join(OUTPUT_DIR, f"{base_filename}_input_slice.png") output_slice_path = os.path.join(OUTPUT_DIR, f"{base_filename}_output_slice.png") image = extract_middle_slices(input_path, input_slice_path, center=center) labeled_mask = extract_middle_slices(new_output_file, output_slice_path, center=center, label_components=True) # Load the binary lesion mask to get its affine output_img = nib.load(new_output_file) labeled_mask_path = os.path.join(OUTPUT_DIR, f"{base_filename}_LabeledClusters.nii.gz") nib.save(nib.Nifti1Image(labeled_mask.astype(np.int16), output_img.affine), labeled_mask_path) # Return paths for the Gradio interface return new_output_file, input_slice_path, output_slice_path, labeled_mask_path else: return "Error: Output file not found." except subprocess.CalledProcessError as e: return f"Error: {e}" # Gradio interface with adjusted layout with gr.Blocks() as demo: gr.Markdown(""" # 🔥 FLAMeS: FLAIR Lesion Segmentation for Multiple Sclerosis Upload a FLAIR brain MRI in NIfTI format (.nii.gz) to generate a binary segmentation of multiple sclerosis lesions. FLAMeS is based on the nnUNet framework2 and was trained on 668 MRI scans acquired using Siemens, GE, and Philips 1.5T and 3T scanners1. We suggest skull-stripping the image in advance using [SynthStrip](https://surfer.nmr.mgh.harvard.edu/docs/synthstrip/) with the `--no-csf` flag for optimal results. If that's not feasible, you can still upload your image as-is and enable the "Apply skull-stripping" option below. Inference takes approximately 1 minute per MRI, with processing limited to one scan at a time due to Hugging Face's zero-GPU usage constraints. To process multiple cases simultaneously, install the [nnUNet v2](https://github.com/MIC-DKFZ/nnUNet), download [FLAMeS's model](https://huggingface.co/FrancescoLR/FLAMeS-model) and run it locally using your own GPU or CPU setup. **Disclaimer:** Uploaded data is stored temporarily, no one has access to it, and it is deleted when the app is closed. For details, see [Gradio's file access guide](https://www.gradio.app/main/guides/file-access). Human subjects data should only be uploaded for processing if permitted by your institution's human subjects protection office. This is a research tool and is not intended for clinical use. Clinical decisions should not be based on the outputs of this tool. """) with gr.Row(): with gr.Column(scale=1): flair_input = gr.File(label="Upload a FLAIR Image (.nii.gz)") hd_bet = gr.Checkbox(label="Apply skull-stripping", value=False) submit_button = gr.Button("Submit") with gr.Column(scale=2): seg_output = gr.File(label="Download the Lesion Segmentation Mask") clusters_output = gr.File(label="Download the Labeled Lesion Segmentation Mask") input_img = gr.Image(label="Input: FLAIR image") output_img = gr.Image(label="Output: Binary Lesion Mask") gr.Markdown(""" **If you find this tool useful, please consider citing:** 1. FLAMeS: A Robust Deep Learning Model for Automated Multiple Sclerosis Lesion Segmentation Dereskewicz, E., La Rosa, F., dos Santos Silva, J., Sizer, E., Kohli, A., Wynen, M., ... & Beck, E. S. *medRxiv (2025) DOI: [10.1177/13524585231169437](https://doi.org/10.1101/2025.05.19.25327707) 2. nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, & K. H. Maier-Hein. *Nature Methods.* 2021;18(2):203-211. DOI: [10.1038/s41592-020-01008-z](https://www.nature.com/articles/s41592-020-01008-z) """) submit_button.click( fn=run_nnunet_predict, inputs=[flair_input, hd_bet], outputs=[seg_output, input_img, output_img, clusters_output] ) # Debugging GPU environment if torch.cuda.is_available(): print(f"GPU is available: {torch.cuda.get_device_name(0)}") else: print("No GPU available. Falling back to CPU.") os.system("nvidia-smi") setup_hd_bet() download_model() if __name__ == "__main__": demo.launch(share=True)