FranciscoLozDataScience commited on
Commit
c7e6fe9
·
1 Parent(s): a008082

edit the format of information

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -48,14 +48,15 @@ def load_interface():
48
  """
49
  # Ensemble Classifier for Predicting Smoker or Non-Smoker
50
 
51
- **Contributors**: Matt Soria, Jake Leniart, Francisco Lozano
52
- **University**: Depaul University
53
- **Class**: DSC 478, Programming Machine Learning
54
 
55
  ## Overview
56
  Our project focused on creating a classifier for a Kaggle dataset containing bio-signals and information on individuals' smoking status. The classifier aims to identify whether a patient is a smoker based on 22 provided features. You can find the dataset [here](https://www.kaggle.com/datasets/gauravduttakiit/smoker-status-prediction-using-biosignals?resource=download&select=train_dataset.csv).
57
  We developed an Ensemble Classifier with Soft Voting, which combines KNN, SVM, and XGBoost classifiers.
58
 
 
59
  - **non-smoker** = 0
60
  - **smoker** = 1
61
 
@@ -63,6 +64,7 @@ def load_interface():
63
 
64
  ### Classification Report
65
 
 
66
  Train Accuracy: 0.7833977837414656
67
  Test Accuracy: 0.7885084006669232
68
 
@@ -74,10 +76,11 @@ def load_interface():
74
  accuracy 0.79 7797
75
  macro avg 0.77 0.77 0.77 7797
76
  weighted avg 0.79 0.79 0.79 7797
 
77
 
78
  ## Confusion Matrix
79
 
80
- ![](file/smoker_cm.png)
81
 
82
  ## Final Report
83
  For more details about our Ensemble Classifier and the individual models, please refer to our Jupyter notebooks in our project repository.
 
48
  """
49
  # Ensemble Classifier for Predicting Smoker or Non-Smoker
50
 
51
+ **Contributors**: Matt Soria, Jake Leniart, Francisco Lozano\n
52
+ **University**: Depaul University\n
53
+ **Class**: DSC 478, Programming Machine Learning\n
54
 
55
  ## Overview
56
  Our project focused on creating a classifier for a Kaggle dataset containing bio-signals and information on individuals' smoking status. The classifier aims to identify whether a patient is a smoker based on 22 provided features. You can find the dataset [here](https://www.kaggle.com/datasets/gauravduttakiit/smoker-status-prediction-using-biosignals?resource=download&select=train_dataset.csv).
57
  We developed an Ensemble Classifier with Soft Voting, which combines KNN, SVM, and XGBoost classifiers.
58
 
59
+ ## Labels
60
  - **non-smoker** = 0
61
  - **smoker** = 1
62
 
 
64
 
65
  ### Classification Report
66
 
67
+ ```
68
  Train Accuracy: 0.7833977837414656
69
  Test Accuracy: 0.7885084006669232
70
 
 
76
  accuracy 0.79 7797
77
  macro avg 0.77 0.77 0.77 7797
78
  weighted avg 0.79 0.79 0.79 7797
79
+ ```
80
 
81
  ## Confusion Matrix
82
 
83
+ ![](smoker_cm.png)
84
 
85
  ## Final Report
86
  For more details about our Ensemble Classifier and the individual models, please refer to our Jupyter notebooks in our project repository.