|
from impact.utils import any_typ, ByPassTypeTuple, make_3d_mask
|
|
import comfy_extras.nodes_mask
|
|
from nodes import MAX_RESOLUTION
|
|
import torch
|
|
import comfy
|
|
import sys
|
|
import nodes
|
|
import re
|
|
from server import PromptServer
|
|
|
|
|
|
class GeneralSwitch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"select": ("INT", {"default": 1, "min": 1, "max": 999999, "step": 1}),
|
|
"sel_mode": ("BOOLEAN", {"default": True, "label_on": "select_on_prompt", "label_off": "select_on_execution", "forceInput": False}),
|
|
},
|
|
"optional": {
|
|
"input1": (any_typ,),
|
|
},
|
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"}
|
|
}
|
|
|
|
RETURN_TYPES = (any_typ, "STRING", "INT")
|
|
RETURN_NAMES = ("selected_value", "selected_label", "selected_index")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, *args, **kwargs):
|
|
selected_index = int(kwargs['select'])
|
|
input_name = f"input{selected_index}"
|
|
|
|
selected_label = input_name
|
|
node_id = kwargs['unique_id']
|
|
|
|
if 'extra_pnginfo' in kwargs and kwargs['extra_pnginfo'] is not None:
|
|
nodelist = kwargs['extra_pnginfo']['workflow']['nodes']
|
|
for node in nodelist:
|
|
if str(node['id']) == node_id:
|
|
inputs = node['inputs']
|
|
|
|
for slot in inputs:
|
|
if slot['name'] == input_name and 'label' in slot:
|
|
selected_label = slot['label']
|
|
|
|
break
|
|
else:
|
|
print(f"[Impact-Pack] The switch node does not guarantee proper functioning in API mode.")
|
|
|
|
if input_name in kwargs:
|
|
return (kwargs[input_name], selected_label, selected_index)
|
|
else:
|
|
print(f"ImpactSwitch: invalid select index (ignored)")
|
|
return (None, "", selected_index)
|
|
|
|
|
|
class LatentSwitch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"select": ("INT", {"default": 1, "min": 1, "max": 99999, "step": 1}),
|
|
"latent1": ("LATENT",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT", )
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, *args, **kwargs):
|
|
input_name = f"latent{int(kwargs['select'])}"
|
|
|
|
if input_name in kwargs:
|
|
return (kwargs[input_name],)
|
|
else:
|
|
print(f"LatentSwitch: invalid select index ('latent1' is selected)")
|
|
return (kwargs['latent1'],)
|
|
|
|
|
|
class ImageMaskSwitch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"select": ("INT", {"default": 1, "min": 1, "max": 4, "step": 1}),
|
|
"images1": ("IMAGE",),
|
|
},
|
|
|
|
"optional": {
|
|
"mask1_opt": ("MASK",),
|
|
"images2_opt": ("IMAGE",),
|
|
"mask2_opt": ("MASK",),
|
|
"images3_opt": ("IMAGE",),
|
|
"mask3_opt": ("MASK",),
|
|
"images4_opt": ("IMAGE",),
|
|
"mask4_opt": ("MASK",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK",)
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, select, images1, mask1_opt=None, images2_opt=None, mask2_opt=None, images3_opt=None, mask3_opt=None,
|
|
images4_opt=None, mask4_opt=None):
|
|
if select == 1:
|
|
return images1, mask1_opt,
|
|
elif select == 2:
|
|
return images2_opt, mask2_opt,
|
|
elif select == 3:
|
|
return images3_opt, mask3_opt,
|
|
else:
|
|
return images4_opt, mask4_opt,
|
|
|
|
|
|
class GeneralInversedSwitch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"select": ("INT", {"default": 1, "min": 1, "max": 999999, "step": 1}),
|
|
"input": (any_typ,),
|
|
},
|
|
"hidden": {"unique_id": "UNIQUE_ID"},
|
|
}
|
|
|
|
RETURN_TYPES = ByPassTypeTuple((any_typ, ))
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, select, input, unique_id):
|
|
res = []
|
|
|
|
for i in range(0, select):
|
|
if select == i+1:
|
|
res.append(input)
|
|
else:
|
|
res.append(None)
|
|
|
|
return res
|
|
|
|
|
|
class RemoveNoiseMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"samples": ("LATENT",)}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, samples):
|
|
res = {key: value for key, value in samples.items() if key != 'noise_mask'}
|
|
return (res, )
|
|
|
|
|
|
class ImagePasteMasked:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"destination": ("IMAGE",),
|
|
"source": ("IMAGE",),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
"resize_source": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"mask": ("MASK",),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "composite"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def composite(self, destination, source, x, y, resize_source, mask = None):
|
|
destination = destination.clone().movedim(-1, 1)
|
|
output = comfy_extras.nodes_mask.composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
|
return (output,)
|
|
|
|
|
|
from impact.utils import any_typ
|
|
|
|
class ImpactLogger:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"data": (any_typ,),
|
|
"text": ("STRING", {"multiline": True}),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO", "unique_id": "UNIQUE_ID"},
|
|
}
|
|
|
|
CATEGORY = "ImpactPack/Debug"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "doit"
|
|
|
|
def doit(self, data, text, prompt, extra_pnginfo, unique_id):
|
|
shape = ""
|
|
if hasattr(data, "shape"):
|
|
shape = f"{data.shape} / "
|
|
|
|
print(f"[IMPACT LOGGER]: {shape}{data}")
|
|
|
|
print(f" PROMPT: {prompt}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PromptServer.instance.send_sync("impact-node-feedback", {"node_id": unique_id, "widget_name": "text", "type": "TEXT", "value": f"{data}"})
|
|
return {}
|
|
|
|
|
|
class ImpactDummyInput:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {}}
|
|
|
|
CATEGORY = "ImpactPack/Debug"
|
|
|
|
RETURN_TYPES = (any_typ,)
|
|
FUNCTION = "doit"
|
|
|
|
def doit(self):
|
|
return ("DUMMY",)
|
|
|
|
|
|
class MasksToMaskList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"masks": ("MASK", ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MASK", )
|
|
OUTPUT_IS_LIST = (True, )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Operation"
|
|
|
|
def doit(self, masks):
|
|
if masks is None:
|
|
empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
return ([empty_mask], )
|
|
|
|
res = []
|
|
|
|
for mask in masks:
|
|
res.append(mask)
|
|
|
|
print(f"mask len: {len(res)}")
|
|
|
|
res = [make_3d_mask(x) for x in res]
|
|
|
|
return (res, )
|
|
|
|
|
|
class MaskListToMaskBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"mask": ("MASK", ),
|
|
}
|
|
}
|
|
|
|
INPUT_IS_LIST = True
|
|
|
|
RETURN_TYPES = ("MASK", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Operation"
|
|
|
|
def doit(self, mask):
|
|
if len(mask) == 1:
|
|
mask = make_3d_mask(mask[0])
|
|
return (mask,)
|
|
elif len(mask) > 1:
|
|
mask1 = make_3d_mask(mask[0])
|
|
|
|
for mask2 in mask[1:]:
|
|
mask2 = make_3d_mask(mask2)
|
|
if mask1.shape[1:] != mask2.shape[1:]:
|
|
mask2 = comfy.utils.common_upscale(mask2.movedim(-1, 1), mask1.shape[2], mask1.shape[1], "lanczos", "center").movedim(1, -1)
|
|
mask1 = torch.cat((mask1, mask2), dim=0)
|
|
|
|
return (mask1,)
|
|
else:
|
|
empty_mask = torch.zeros((1, 64, 64), dtype=torch.float32, device="cpu").unsqueeze(0)
|
|
return (empty_mask,)
|
|
|
|
|
|
class ImageListToImageBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"images": ("IMAGE", ),
|
|
}
|
|
}
|
|
|
|
INPUT_IS_LIST = True
|
|
|
|
RETURN_TYPES = ("IMAGE", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Operation"
|
|
|
|
def doit(self, images):
|
|
if len(images) <= 1:
|
|
return (images,)
|
|
else:
|
|
image1 = images[0]
|
|
for image2 in images[1:]:
|
|
if image1.shape[1:] != image2.shape[1:]:
|
|
image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "lanczos", "center").movedim(1, -1)
|
|
image1 = torch.cat((image1, image2), dim=0)
|
|
return (image1,)
|
|
|
|
|
|
class ImageBatchToImageList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"image": ("IMAGE",), }}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
OUTPUT_IS_LIST = (True,)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, image):
|
|
images = [image[i:i + 1, ...] for i in range(image.shape[0])]
|
|
return (images, )
|
|
|
|
|
|
class MakeImageList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"image1": ("IMAGE",), }}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
OUTPUT_IS_LIST = (True,)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, **kwargs):
|
|
images = []
|
|
|
|
for k, v in kwargs.items():
|
|
images.append(v)
|
|
|
|
return (images, )
|
|
|
|
|
|
class MakeImageBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"image1": ("IMAGE",), }}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, **kwargs):
|
|
image1 = kwargs['image1']
|
|
del kwargs['image1']
|
|
images = [value for value in kwargs.values()]
|
|
|
|
if len(images) == 0:
|
|
return (image1,)
|
|
else:
|
|
for image2 in images:
|
|
if image1.shape[1:] != image2.shape[1:]:
|
|
image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "lanczos", "center").movedim(1, -1)
|
|
image1 = torch.cat((image1, image2), dim=0)
|
|
return (image1,)
|
|
|
|
|
|
class ReencodeLatent:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"samples": ("LATENT", ),
|
|
"tile_mode": (["None", "Both", "Decode(input) only", "Encode(output) only"],),
|
|
"input_vae": ("VAE", ),
|
|
"output_vae": ("VAE", ),
|
|
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
RETURN_TYPES = ("LATENT", )
|
|
FUNCTION = "doit"
|
|
|
|
def doit(self, samples, tile_mode, input_vae, output_vae, tile_size=512):
|
|
if tile_mode in ["Both", "Decode(input) only"]:
|
|
pixels = nodes.VAEDecodeTiled().decode(input_vae, samples, tile_size)[0]
|
|
else:
|
|
pixels = nodes.VAEDecode().decode(input_vae, samples)[0]
|
|
|
|
if tile_mode in ["Both", "Encode(output) only"]:
|
|
return nodes.VAEEncodeTiled().encode(output_vae, pixels, tile_size)
|
|
else:
|
|
return nodes.VAEEncode().encode(output_vae, pixels)
|
|
|
|
|
|
class ReencodeLatentPipe:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"samples": ("LATENT", ),
|
|
"tile_mode": (["None", "Both", "Decode(input) only", "Encode(output) only"],),
|
|
"input_basic_pipe": ("BASIC_PIPE", ),
|
|
"output_basic_pipe": ("BASIC_PIPE", ),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
RETURN_TYPES = ("LATENT", )
|
|
FUNCTION = "doit"
|
|
|
|
def doit(self, samples, tile_mode, input_basic_pipe, output_basic_pipe):
|
|
_, _, input_vae, _, _ = input_basic_pipe
|
|
_, _, output_vae, _, _ = output_basic_pipe
|
|
return ReencodeLatent().doit(samples, tile_mode, input_vae, output_vae)
|
|
|
|
|
|
class StringSelector:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"strings": ("STRING", {"multiline": True}),
|
|
"multiline": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
|
|
"select": ("INT", {"min": 0, "max": sys.maxsize, "step": 1, "default": 0}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, strings, multiline, select):
|
|
lines = strings.split('\n')
|
|
|
|
if multiline:
|
|
result = []
|
|
current_string = ""
|
|
|
|
for line in lines:
|
|
if line.startswith("#"):
|
|
if current_string:
|
|
result.append(current_string.strip())
|
|
current_string = ""
|
|
current_string += line + "\n"
|
|
|
|
if current_string:
|
|
result.append(current_string.strip())
|
|
|
|
if len(result) == 0:
|
|
selected = strings
|
|
else:
|
|
selected = result[select % len(result)]
|
|
|
|
if selected.startswith('#'):
|
|
selected = selected[1:]
|
|
else:
|
|
if len(lines) == 0:
|
|
selected = strings
|
|
else:
|
|
selected = lines[select % len(lines)]
|
|
|
|
return (selected, )
|
|
|
|
|
|
class StringListToString:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"join_with": ("STRING", {"default": "\\n"}),
|
|
"string_list": ("STRING", {"forceInput": True}),
|
|
}
|
|
}
|
|
|
|
INPUT_IS_LIST = True
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, join_with, string_list):
|
|
|
|
if join_with[0] == "\\n":
|
|
join_with[0] = "\n"
|
|
|
|
joined_text = join_with[0].join(string_list)
|
|
|
|
return (joined_text,)
|
|
|
|
|
|
class WildcardPromptFromString:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"string": ("STRING", {"forceInput": True}),
|
|
"delimiter": ("STRING", {"multiline": False, "default": "\\n" }),
|
|
"prefix_all": ("STRING", {"multiline": False}),
|
|
"postfix_all": ("STRING", {"multiline": False}),
|
|
"restrict_to_tags": ("STRING", {"multiline": False}),
|
|
"exclude_tags": ("STRING", {"multiline": False})
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING", "STRING",)
|
|
RETURN_NAMES = ("wildcard", "segs_labels",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/Util"
|
|
|
|
def doit(self, string, delimiter, prefix_all, postfix_all, restrict_to_tags, exclude_tags):
|
|
|
|
if delimiter == "\\n":
|
|
delimiter = "\n"
|
|
|
|
|
|
if prefix_all is None:
|
|
prefix_all = ""
|
|
if postfix_all is None:
|
|
postfix_all = ""
|
|
if restrict_to_tags is None:
|
|
restrict_to_tags = ""
|
|
if exclude_tags is None:
|
|
exclude_tags = ""
|
|
|
|
restrict_to_tags = restrict_to_tags.split(", ")
|
|
exclude_tags = exclude_tags.split(", ")
|
|
|
|
|
|
output = ["[LAB]"]
|
|
labels = []
|
|
for x in string.split(delimiter):
|
|
label = str(len(labels) + 1)
|
|
labels.append(label)
|
|
x = x.split(", ")
|
|
|
|
if restrict_to_tags != [""]:
|
|
x = list(set(x) & set(restrict_to_tags))
|
|
|
|
if exclude_tags != [""]:
|
|
x = list(set(x) - set(exclude_tags))
|
|
|
|
prompt_for_seg = f'[{label}] {prefix_all} {", ".join(x)} {postfix_all}'.strip()
|
|
output.append(prompt_for_seg)
|
|
output = "\n".join(output)
|
|
|
|
|
|
output = re.sub(r' ,', ',', output)
|
|
output = re.sub(r' +', ' ', output)
|
|
output = re.sub(r',,+', ',', output)
|
|
output = re.sub(r'\n, ', '\n', output)
|
|
|
|
return output, ", ".join(labels)
|
|
|