|
import os
|
|
|
|
import torch
|
|
from PIL import ImageOps
|
|
import comfy
|
|
import folder_paths
|
|
import base64
|
|
from io import BytesIO
|
|
from .libs.utils import *
|
|
|
|
|
|
class LoadImagesFromDirBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"directory": ("STRING", {"default": ""}),
|
|
},
|
|
"optional": {
|
|
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
|
|
"start_index": ("INT", {"default": 0, "min": -1, "step": 1}),
|
|
"load_always": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT")
|
|
FUNCTION = "load_images"
|
|
|
|
CATEGORY = "image"
|
|
|
|
@classmethod
|
|
def IS_CHANGED(cls, **kwargs):
|
|
if 'load_always' in kwargs and kwargs['load_always']:
|
|
return float("NaN")
|
|
else:
|
|
return hash(frozenset(kwargs))
|
|
|
|
def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0, load_always=False):
|
|
if not os.path.isdir(directory):
|
|
raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
|
|
dir_files = os.listdir(directory)
|
|
if len(dir_files) == 0:
|
|
raise FileNotFoundError(f"No files in directory '{directory}'.")
|
|
|
|
|
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
|
|
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]
|
|
|
|
dir_files = sorted(dir_files)
|
|
dir_files = [os.path.join(directory, x) for x in dir_files]
|
|
|
|
|
|
dir_files = dir_files[start_index:]
|
|
|
|
images = []
|
|
masks = []
|
|
|
|
limit_images = False
|
|
if image_load_cap > 0:
|
|
limit_images = True
|
|
image_count = 0
|
|
|
|
has_non_empty_mask = False
|
|
|
|
for image_path in dir_files:
|
|
if os.path.isdir(image_path) and os.path.ex:
|
|
continue
|
|
if limit_images and image_count >= image_load_cap:
|
|
break
|
|
i = Image.open(image_path)
|
|
i = ImageOps.exif_transpose(i)
|
|
image = i.convert("RGB")
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image)[None,]
|
|
if 'A' in i.getbands():
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
mask = 1. - torch.from_numpy(mask)
|
|
has_non_empty_mask = True
|
|
else:
|
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
images.append(image)
|
|
masks.append(mask)
|
|
image_count += 1
|
|
|
|
if len(images) == 1:
|
|
return (images[0], masks[0], 1)
|
|
|
|
elif len(images) > 1:
|
|
image1 = images[0]
|
|
mask1 = None
|
|
|
|
for image2 in images[1:]:
|
|
if image1.shape[1:] != image2.shape[1:]:
|
|
image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1)
|
|
image1 = torch.cat((image1, image2), dim=0)
|
|
|
|
for mask2 in masks[1:]:
|
|
if has_non_empty_mask:
|
|
if image1.shape[1:3] != mask2.shape:
|
|
mask2 = torch.nn.functional.interpolate(mask2.unsqueeze(0).unsqueeze(0), size=(image1.shape[2], image1.shape[1]), mode='bilinear', align_corners=False)
|
|
mask2 = mask2.squeeze(0)
|
|
else:
|
|
mask2 = mask2.unsqueeze(0)
|
|
else:
|
|
mask2 = mask2.unsqueeze(0)
|
|
|
|
if mask1 is None:
|
|
mask1 = mask2
|
|
else:
|
|
mask1 = torch.cat((mask1, mask2), dim=0)
|
|
|
|
return (image1, mask1, len(images))
|
|
|
|
|
|
class LoadImagesFromDirList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"directory": ("STRING", {"default": ""}),
|
|
},
|
|
"optional": {
|
|
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
|
|
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
|
|
"load_always": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
|
|
RETURN_NAMES = ("IMAGE", "MASK", "FILE PATH")
|
|
OUTPUT_IS_LIST = (True, True, True)
|
|
|
|
FUNCTION = "load_images"
|
|
|
|
CATEGORY = "image"
|
|
|
|
@classmethod
|
|
def IS_CHANGED(cls, **kwargs):
|
|
if 'load_always' in kwargs and kwargs['load_always']:
|
|
return float("NaN")
|
|
else:
|
|
return hash(frozenset(kwargs))
|
|
|
|
def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0, load_always=False):
|
|
if not os.path.isdir(directory):
|
|
raise FileNotFoundError(f"Directory '{directory}' cannot be found.")
|
|
dir_files = os.listdir(directory)
|
|
if len(dir_files) == 0:
|
|
raise FileNotFoundError(f"No files in directory '{directory}'.")
|
|
|
|
|
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
|
|
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]
|
|
|
|
dir_files = sorted(dir_files)
|
|
dir_files = [os.path.join(directory, x) for x in dir_files]
|
|
|
|
|
|
dir_files = dir_files[start_index:]
|
|
|
|
images = []
|
|
masks = []
|
|
file_paths = []
|
|
|
|
limit_images = False
|
|
if image_load_cap > 0:
|
|
limit_images = True
|
|
image_count = 0
|
|
|
|
for image_path in dir_files:
|
|
if os.path.isdir(image_path) and os.path.ex:
|
|
continue
|
|
if limit_images and image_count >= image_load_cap:
|
|
break
|
|
i = Image.open(image_path)
|
|
i = ImageOps.exif_transpose(i)
|
|
image = i.convert("RGB")
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image)[None,]
|
|
|
|
if 'A' in i.getbands():
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
mask = 1. - torch.from_numpy(mask)
|
|
else:
|
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
|
|
images.append(image)
|
|
masks.append(mask)
|
|
file_paths.append(str(image_path))
|
|
image_count += 1
|
|
|
|
return (images, masks, file_paths)
|
|
|
|
|
|
class LoadImageInspire:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
|
return {"required": {
|
|
"image": (sorted(files) + ["#DATA"], {"image_upload": True}),
|
|
"image_data": ("STRING", {"multiline": False}),
|
|
}
|
|
}
|
|
|
|
CATEGORY = "InspirePack/image"
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
FUNCTION = "load_image"
|
|
|
|
def load_image(self, image, image_data):
|
|
image_data = base64.b64decode(image_data.split(",")[1])
|
|
i = Image.open(BytesIO(image_data))
|
|
i = ImageOps.exif_transpose(i)
|
|
image = i.convert("RGB")
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image)[None,]
|
|
if 'A' in i.getbands():
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
mask = 1. - torch.from_numpy(mask)
|
|
else:
|
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
return (image, mask.unsqueeze(0))
|
|
|
|
|
|
class ChangeImageBatchSize:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image": ("IMAGE",),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}),
|
|
"mode": (["simple"],)
|
|
}
|
|
}
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
RETURN_TYPES = ("IMAGE", )
|
|
FUNCTION = "doit"
|
|
|
|
@staticmethod
|
|
def resize_tensor(input_tensor, batch_size, mode):
|
|
if mode == "simple":
|
|
if len(input_tensor) < batch_size:
|
|
last_frame = input_tensor[-1].unsqueeze(0).expand(batch_size - len(input_tensor), -1, -1, -1)
|
|
output_tensor = torch.concat((input_tensor, last_frame), dim=0)
|
|
else:
|
|
output_tensor = input_tensor[:batch_size, :, :, :]
|
|
return output_tensor
|
|
else:
|
|
print(f"[WARN] ChangeImage(Latent)BatchSize: Unknown mode `{mode}` - ignored")
|
|
return input_tensor
|
|
|
|
@staticmethod
|
|
def doit(image, batch_size, mode):
|
|
res = ChangeImageBatchSize.resize_tensor(image, batch_size, mode)
|
|
return (res,)
|
|
|
|
|
|
class ChangeLatentBatchSize:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"latent": ("LATENT",),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}),
|
|
"mode": (["simple"],)
|
|
}
|
|
}
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
RETURN_TYPES = ("LATENT", )
|
|
FUNCTION = "doit"
|
|
|
|
@staticmethod
|
|
def doit(latent, batch_size, mode):
|
|
res_latent = latent.copy()
|
|
samples = res_latent['samples']
|
|
samples = ChangeImageBatchSize.resize_tensor(samples, batch_size, mode)
|
|
res_latent['samples'] = samples
|
|
return (res_latent,)
|
|
|
|
|
|
class ImageBatchSplitter:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"images": ("IMAGE",),
|
|
"split_count": ("INT", {"default": 4, "min": 0, "max": 50, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ByPassTypeTuple(("IMAGE", ))
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, images, split_count):
|
|
cnt = min(split_count, len(images))
|
|
res = [image.unsqueeze(0) for image in images[:cnt]]
|
|
|
|
if split_count >= len(images):
|
|
lack_cnt = split_count - cnt + 1
|
|
empty_image = empty_pil_tensor()
|
|
for x in range(0, lack_cnt):
|
|
res.append(empty_image)
|
|
elif cnt < len(images):
|
|
remained_cnt = len(images) - cnt
|
|
remained_image = images[-remained_cnt:]
|
|
res.append(remained_image)
|
|
|
|
return tuple(res)
|
|
|
|
|
|
class LatentBatchSplitter:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"latent": ("LATENT",),
|
|
"split_count": ("INT", {"default": 4, "min": 0, "max": 50, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ByPassTypeTuple(("LATENT", ))
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, latent, split_count):
|
|
samples = latent['samples']
|
|
|
|
latent_base = latent.copy()
|
|
del latent_base['samples']
|
|
|
|
cnt = min(split_count, len(samples))
|
|
res = []
|
|
|
|
for single_samples in samples[:cnt]:
|
|
item = latent_base.copy()
|
|
item['samples'] = single_samples.unsqueeze(0)
|
|
res.append(item)
|
|
|
|
if split_count >= len(samples):
|
|
lack_cnt = split_count - cnt + 1
|
|
item = latent_base.copy()
|
|
item['samples'] = empty_latent()
|
|
|
|
for x in range(0, lack_cnt):
|
|
res.append(item)
|
|
|
|
elif cnt < len(samples):
|
|
remained_cnt = len(samples) - cnt
|
|
remained_latent = latent_base.copy()
|
|
remained_latent['samples'] = samples[-remained_cnt:]
|
|
res.append(remained_latent)
|
|
|
|
return tuple(res)
|
|
|
|
|
|
def top_k_colors(image_tensor, k, min_pixels):
|
|
flattened_image = image_tensor.view(-1, image_tensor.size(-1))
|
|
|
|
unique_colors, counts = torch.unique(flattened_image, dim=0, return_counts=True)
|
|
|
|
sorted_counts, sorted_indices = torch.sort(counts, descending=True)
|
|
sorted_colors = unique_colors[sorted_indices]
|
|
|
|
filtered_colors = sorted_colors[sorted_counts >= min_pixels]
|
|
|
|
return filtered_colors[:k]
|
|
|
|
|
|
def create_mask(image_tensor, color):
|
|
mask_tensor = torch.zeros_like(image_tensor[:, :, :, 0])
|
|
mask_tensor = torch.where(torch.all(image_tensor == color, dim=-1, keepdim=False), 1, mask_tensor)
|
|
return mask_tensor
|
|
|
|
|
|
class ColorMapToMasks:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"color_map": ("IMAGE",),
|
|
"min_pixels": ("INT", {"default": 500, "min": 1, "max": 0xffffffffffffffff, "step": 1}),
|
|
"max_count": ("INT", {"default": 5, "min": 0, "max": 1000, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MASK",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, color_map, max_count, min_pixels):
|
|
if len(color_map) > 0:
|
|
print(f"[Inspire Pack] WARN: ColorMapToMasks - Sure, here's the translation: `color_map` can only be a single image. Only the first image will be processed. If you want to utilize the remaining images, convert the Image Batch to an Image List.")
|
|
|
|
top_colors = top_k_colors(color_map[0], max_count, min_pixels)
|
|
|
|
masks = None
|
|
|
|
for color in top_colors:
|
|
this_mask = create_mask(color_map, color)
|
|
if masks is None:
|
|
masks = this_mask
|
|
else:
|
|
masks = torch.concat((masks, this_mask), dim=0)
|
|
|
|
if masks is None:
|
|
masks = torch.zeros_like(color_map[0, :, :, 0])
|
|
masks.unsqueeze(0)
|
|
|
|
return (masks,)
|
|
|
|
|
|
class SelectNthMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"masks": ("MASK",),
|
|
"idx": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MASK",)
|
|
FUNCTION = "doit"
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, masks, idx):
|
|
return (masks[idx].unsqueeze(0),)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"LoadImagesFromDir //Inspire": LoadImagesFromDirBatch,
|
|
"LoadImageListFromDir //Inspire": LoadImagesFromDirList,
|
|
"LoadImage //Inspire": LoadImageInspire,
|
|
"ChangeImageBatchSize //Inspire": ChangeImageBatchSize,
|
|
"ChangeLatentBatchSize //Inspire": ChangeLatentBatchSize,
|
|
"ImageBatchSplitter //Inspire": ImageBatchSplitter,
|
|
"LatentBatchSplitter //Inspire": LatentBatchSplitter,
|
|
"ColorMapToMasks //Inspire": ColorMapToMasks,
|
|
"SelectNthMask //Inspire": SelectNthMask
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"LoadImagesFromDir //Inspire": "Load Image Batch From Dir (Inspire)",
|
|
"LoadImageListFromDir //Inspire": "Load Image List From Dir (Inspire)",
|
|
"LoadImage //Inspire": "Load Image (Inspire)",
|
|
"ChangeImageBatchSize //Inspire": "Change Image Batch Size (Inspire)",
|
|
"ChangeLatentBatchSize //Inspire": "Change Latent Batch Size (Inspire)",
|
|
"ImageBatchSplitter //Inspire": "Image Batch Splitter (Inspire)",
|
|
"LatentBatchSplitter //Inspire": "Latent Batch Splitter (Inspire)",
|
|
"ColorMapToMasks //Inspire": "Color Map To Masks (Inspire)",
|
|
"SelectNthMask //Inspire": "Select Nth Mask (Inspire)"
|
|
}
|
|
|