|
from ..utility.utility import tensor2pil, pil2tensor
|
|
from PIL import Image, ImageDraw, ImageFilter
|
|
import numpy as np
|
|
import torch
|
|
from torchvision.transforms import Resize, CenterCrop, InterpolationMode
|
|
import math
|
|
|
|
|
|
|
|
def bbox_to_region(bbox, target_size=None):
|
|
bbox = bbox_check(bbox, target_size)
|
|
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
|
|
|
|
def bbox_check(bbox, target_size=None):
|
|
if not target_size:
|
|
return bbox
|
|
|
|
new_bbox = (
|
|
bbox[0],
|
|
bbox[1],
|
|
min(target_size[0] - bbox[0], bbox[2]),
|
|
min(target_size[1] - bbox[1], bbox[3]),
|
|
)
|
|
return new_bbox
|
|
|
|
class BatchCropFromMask:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"original_images": ("IMAGE",),
|
|
"masks": ("MASK",),
|
|
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
|
|
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = (
|
|
"IMAGE",
|
|
"IMAGE",
|
|
"BBOX",
|
|
"INT",
|
|
"INT",
|
|
)
|
|
RETURN_NAMES = (
|
|
"original_images",
|
|
"cropped_images",
|
|
"bboxes",
|
|
"width",
|
|
"height",
|
|
)
|
|
FUNCTION = "crop"
|
|
CATEGORY = "KJNodes/masking"
|
|
|
|
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
|
|
if alpha == 0:
|
|
return prev_bbox_size
|
|
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
|
|
|
|
def smooth_center(self, prev_center, curr_center, alpha=0.5):
|
|
if alpha == 0:
|
|
return prev_center
|
|
return (
|
|
round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
|
|
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
|
|
)
|
|
|
|
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
|
|
|
|
bounding_boxes = []
|
|
cropped_images = []
|
|
|
|
self.max_bbox_width = 0
|
|
self.max_bbox_height = 0
|
|
|
|
|
|
curr_max_bbox_width = 0
|
|
curr_max_bbox_height = 0
|
|
for mask in masks:
|
|
_mask = tensor2pil(mask)[0]
|
|
non_zero_indices = np.nonzero(np.array(_mask))
|
|
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
|
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
|
width = max_x - min_x
|
|
height = max_y - min_y
|
|
curr_max_bbox_width = max(curr_max_bbox_width, width)
|
|
curr_max_bbox_height = max(curr_max_bbox_height, height)
|
|
|
|
|
|
self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
|
|
self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)
|
|
|
|
|
|
self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
|
|
self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
|
|
bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height
|
|
|
|
|
|
for i, (mask, img) in enumerate(zip(masks, original_images)):
|
|
_mask = tensor2pil(mask)[0]
|
|
non_zero_indices = np.nonzero(np.array(_mask))
|
|
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
|
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
|
|
|
|
|
center_x = np.mean(non_zero_indices[1])
|
|
center_y = np.mean(non_zero_indices[0])
|
|
curr_center = (round(center_x), round(center_y))
|
|
|
|
|
|
if not hasattr(self, 'prev_center'):
|
|
self.prev_center = curr_center
|
|
|
|
|
|
if i > 0:
|
|
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
|
|
else:
|
|
center = curr_center
|
|
|
|
|
|
self.prev_center = center
|
|
|
|
|
|
half_box_width = round(self.max_bbox_width / 2)
|
|
half_box_height = round(self.max_bbox_height / 2)
|
|
min_x = max(0, center[0] - half_box_width)
|
|
max_x = min(img.shape[1], center[0] + half_box_width)
|
|
min_y = max(0, center[1] - half_box_height)
|
|
max_y = min(img.shape[0], center[1] + half_box_height)
|
|
|
|
|
|
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
|
|
|
|
|
|
cropped_img = img[min_y:max_y, min_x:max_x, :]
|
|
|
|
|
|
new_height = min(cropped_img.shape[0], self.max_bbox_height)
|
|
new_width = round(new_height * bbox_aspect_ratio)
|
|
|
|
|
|
resize_transform = Resize((new_height, new_width))
|
|
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
|
|
|
|
|
|
crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width))
|
|
cropped_resized_img = crop_transform(resized_img)
|
|
|
|
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
|
|
|
|
cropped_out = torch.stack(cropped_images, dim=0)
|
|
|
|
return (original_images, cropped_out, bounding_boxes, self.max_bbox_width, self.max_bbox_height, )
|
|
|
|
class BatchUncrop:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"original_images": ("IMAGE",),
|
|
"cropped_images": ("IMAGE",),
|
|
"bboxes": ("BBOX",),
|
|
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"border_top": ("BOOLEAN", {"default": True}),
|
|
"border_bottom": ("BOOLEAN", {"default": True}),
|
|
"border_left": ("BOOLEAN", {"default": True}),
|
|
"border_right": ("BOOLEAN", {"default": True}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "uncrop"
|
|
|
|
CATEGORY = "KJNodes/masking"
|
|
|
|
def uncrop(self, original_images, cropped_images, bboxes, border_blending, crop_rescale, border_top, border_bottom, border_left, border_right):
|
|
def inset_border(image, border_width, border_color, border_top, border_bottom, border_left, border_right):
|
|
draw = ImageDraw.Draw(image)
|
|
width, height = image.size
|
|
if border_top:
|
|
draw.rectangle((0, 0, width, border_width), fill=border_color)
|
|
if border_bottom:
|
|
draw.rectangle((0, height - border_width, width, height), fill=border_color)
|
|
if border_left:
|
|
draw.rectangle((0, 0, border_width, height), fill=border_color)
|
|
if border_right:
|
|
draw.rectangle((width - border_width, 0, width, height), fill=border_color)
|
|
return image
|
|
|
|
if len(original_images) != len(cropped_images):
|
|
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
|
|
|
|
|
|
if len(bboxes) > len(original_images):
|
|
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
|
|
bboxes = bboxes[:len(original_images)]
|
|
elif len(bboxes) < len(original_images):
|
|
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
|
|
|
|
input_images = tensor2pil(original_images)
|
|
crop_imgs = tensor2pil(cropped_images)
|
|
|
|
out_images = []
|
|
for i in range(len(input_images)):
|
|
img = input_images[i]
|
|
crop = crop_imgs[i]
|
|
bbox = bboxes[i]
|
|
|
|
|
|
bb_x, bb_y, bb_width, bb_height = bbox
|
|
|
|
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
|
|
|
|
|
|
scale_x = crop_rescale
|
|
scale_y = crop_rescale
|
|
|
|
|
|
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
|
|
|
|
|
|
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
|
|
crop_img = crop.convert("RGB")
|
|
|
|
if border_blending > 1.0:
|
|
border_blending = 1.0
|
|
elif border_blending < 0.0:
|
|
border_blending = 0.0
|
|
|
|
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
|
|
|
|
blend = img.convert("RGBA")
|
|
mask = Image.new("L", img.size, 0)
|
|
|
|
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
|
|
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0), border_top, border_bottom, border_left, border_right)
|
|
|
|
mask.paste(mask_block, paste_region)
|
|
blend.paste(crop_img, paste_region)
|
|
|
|
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
|
|
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
|
|
|
|
blend.putalpha(mask)
|
|
img = Image.alpha_composite(img.convert("RGBA"), blend)
|
|
out_images.append(img.convert("RGB"))
|
|
|
|
return (pil2tensor(out_images),)
|
|
|
|
class BatchCropFromMaskAdvanced:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"original_images": ("IMAGE",),
|
|
"masks": ("MASK",),
|
|
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = (
|
|
"IMAGE",
|
|
"IMAGE",
|
|
"MASK",
|
|
"IMAGE",
|
|
"MASK",
|
|
"BBOX",
|
|
"BBOX",
|
|
"INT",
|
|
"INT",
|
|
)
|
|
RETURN_NAMES = (
|
|
"original_images",
|
|
"cropped_images",
|
|
"cropped_masks",
|
|
"combined_crop_image",
|
|
"combined_crop_masks",
|
|
"bboxes",
|
|
"combined_bounding_box",
|
|
"bbox_width",
|
|
"bbox_height",
|
|
)
|
|
FUNCTION = "crop"
|
|
CATEGORY = "KJNodes/masking"
|
|
|
|
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
|
|
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
|
|
|
|
def smooth_center(self, prev_center, curr_center, alpha=0.5):
|
|
return (round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
|
|
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1]))
|
|
|
|
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
|
|
bounding_boxes = []
|
|
combined_bounding_box = []
|
|
cropped_images = []
|
|
cropped_masks = []
|
|
cropped_masks_out = []
|
|
combined_crop_out = []
|
|
combined_cropped_images = []
|
|
combined_cropped_masks = []
|
|
|
|
def calculate_bbox(mask):
|
|
non_zero_indices = np.nonzero(np.array(mask))
|
|
|
|
|
|
min_x, max_x, min_y, max_y = 0, 0, 0, 0
|
|
if len(non_zero_indices[1]) > 0 and len(non_zero_indices[0]) > 0:
|
|
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
|
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
|
|
|
width = max_x - min_x
|
|
height = max_y - min_y
|
|
bbox_size = max(width, height)
|
|
return min_x, max_x, min_y, max_y, bbox_size
|
|
|
|
combined_mask = torch.max(masks, dim=0)[0]
|
|
_mask = tensor2pil(combined_mask)[0]
|
|
new_min_x, new_max_x, new_min_y, new_max_y, combined_bbox_size = calculate_bbox(_mask)
|
|
center_x = (new_min_x + new_max_x) / 2
|
|
center_y = (new_min_y + new_max_y) / 2
|
|
half_box_size = round(combined_bbox_size // 2)
|
|
new_min_x = max(0, round(center_x - half_box_size))
|
|
new_max_x = min(original_images[0].shape[1], round(center_x + half_box_size))
|
|
new_min_y = max(0, round(center_y - half_box_size))
|
|
new_max_y = min(original_images[0].shape[0], round(center_y + half_box_size))
|
|
|
|
combined_bounding_box.append((new_min_x, new_min_y, new_max_x - new_min_x, new_max_y - new_min_y))
|
|
|
|
self.max_bbox_size = 0
|
|
|
|
|
|
curr_max_bbox_size = max(calculate_bbox(tensor2pil(mask)[0])[-1] for mask in masks)
|
|
|
|
self.max_bbox_size = self.smooth_bbox_size(self.max_bbox_size, curr_max_bbox_size, bbox_smooth_alpha)
|
|
|
|
self.max_bbox_size = round(self.max_bbox_size * crop_size_mult)
|
|
|
|
self.max_bbox_size = math.ceil(self.max_bbox_size / 16) * 16
|
|
|
|
if self.max_bbox_size > original_images[0].shape[0] or self.max_bbox_size > original_images[0].shape[1]:
|
|
|
|
self.max_bbox_size = math.floor(min(original_images[0].shape[0], original_images[0].shape[1]) / 2) * 2
|
|
|
|
|
|
for i, (mask, img) in enumerate(zip(masks, original_images)):
|
|
_mask = tensor2pil(mask)[0]
|
|
non_zero_indices = np.nonzero(np.array(_mask))
|
|
|
|
|
|
if len(non_zero_indices[0]) > 0 and len(non_zero_indices[1]) > 0:
|
|
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
|
|
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
|
|
|
|
|
|
center_x = np.mean(non_zero_indices[1])
|
|
center_y = np.mean(non_zero_indices[0])
|
|
curr_center = (round(center_x), round(center_y))
|
|
|
|
|
|
if not hasattr(self, 'prev_center'):
|
|
self.prev_center = curr_center
|
|
|
|
|
|
if i > 0:
|
|
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
|
|
else:
|
|
center = curr_center
|
|
|
|
|
|
self.prev_center = center
|
|
|
|
|
|
half_box_size = self.max_bbox_size // 2
|
|
min_x = max(0, center[0] - half_box_size)
|
|
max_x = min(img.shape[1], center[0] + half_box_size)
|
|
min_y = max(0, center[1] - half_box_size)
|
|
max_y = min(img.shape[0], center[1] + half_box_size)
|
|
|
|
|
|
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
|
|
|
|
|
|
cropped_img = img[min_y:max_y, min_x:max_x, :]
|
|
cropped_mask = mask[min_y:max_y, min_x:max_x]
|
|
|
|
|
|
new_size = max(cropped_img.shape[0], cropped_img.shape[1])
|
|
resize_transform = Resize(new_size, interpolation=InterpolationMode.NEAREST, max_size=max(img.shape[0], img.shape[1]))
|
|
resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
|
|
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
|
|
|
|
|
|
crop_transform = CenterCrop((min(self.max_bbox_size, resized_img.shape[1]), min(self.max_bbox_size, resized_img.shape[2])))
|
|
|
|
cropped_resized_img = crop_transform(resized_img)
|
|
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
|
|
|
|
cropped_resized_mask = crop_transform(resized_mask)
|
|
cropped_masks.append(cropped_resized_mask)
|
|
|
|
combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
|
|
combined_cropped_images.append(combined_cropped_img)
|
|
|
|
combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
|
|
combined_cropped_masks.append(combined_cropped_mask)
|
|
else:
|
|
bounding_boxes.append((0, 0, img.shape[1], img.shape[0]))
|
|
cropped_images.append(img)
|
|
cropped_masks.append(mask)
|
|
combined_cropped_images.append(img)
|
|
combined_cropped_masks.append(mask)
|
|
|
|
cropped_out = torch.stack(cropped_images, dim=0)
|
|
combined_crop_out = torch.stack(combined_cropped_images, dim=0)
|
|
cropped_masks_out = torch.stack(cropped_masks, dim=0)
|
|
combined_crop_mask_out = torch.stack(combined_cropped_masks, dim=0)
|
|
|
|
return (original_images, cropped_out, cropped_masks_out, combined_crop_out, combined_crop_mask_out, bounding_boxes, combined_bounding_box, self.max_bbox_size, self.max_bbox_size)
|
|
|
|
class FilterZeroMasksAndCorrespondingImages:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"masks": ("MASK",),
|
|
},
|
|
"optional": {
|
|
"original_images": ("IMAGE",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MASK", "IMAGE", "IMAGE", "INDEXES",)
|
|
RETURN_NAMES = ("non_zero_masks_out", "non_zero_mask_images_out", "zero_mask_images_out", "zero_mask_images_out_indexes",)
|
|
FUNCTION = "filter"
|
|
CATEGORY = "KJNodes/masking"
|
|
DESCRIPTION = """
|
|
Filter out all the empty (i.e. all zero) mask in masks
|
|
Also filter out all the corresponding images in original_images by indexes if provide
|
|
|
|
original_images (optional): If provided, need have same length as masks.
|
|
"""
|
|
|
|
def filter(self, masks, original_images=None):
|
|
non_zero_masks = []
|
|
non_zero_mask_images = []
|
|
zero_mask_images = []
|
|
zero_mask_images_indexes = []
|
|
|
|
masks_num = len(masks)
|
|
also_process_images = False
|
|
if original_images is not None:
|
|
imgs_num = len(original_images)
|
|
if len(original_images) == masks_num:
|
|
also_process_images = True
|
|
else:
|
|
print(f"[WARNING] ignore input: original_images, due to number of original_images ({imgs_num}) is not equal to number of masks ({masks_num})")
|
|
|
|
for i in range(masks_num):
|
|
non_zero_num = np.count_nonzero(np.array(masks[i]))
|
|
if non_zero_num > 0:
|
|
non_zero_masks.append(masks[i])
|
|
if also_process_images:
|
|
non_zero_mask_images.append(original_images[i])
|
|
else:
|
|
zero_mask_images.append(original_images[i])
|
|
zero_mask_images_indexes.append(i)
|
|
|
|
non_zero_masks_out = torch.stack(non_zero_masks, dim=0)
|
|
non_zero_mask_images_out = zero_mask_images_out = zero_mask_images_out_indexes = None
|
|
|
|
if also_process_images:
|
|
non_zero_mask_images_out = torch.stack(non_zero_mask_images, dim=0)
|
|
if len(zero_mask_images) > 0:
|
|
zero_mask_images_out = torch.stack(zero_mask_images, dim=0)
|
|
zero_mask_images_out_indexes = zero_mask_images_indexes
|
|
|
|
return (non_zero_masks_out, non_zero_mask_images_out, zero_mask_images_out, zero_mask_images_out_indexes)
|
|
|
|
class InsertImageBatchByIndexes:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE",),
|
|
"images_to_insert": ("IMAGE",),
|
|
"insert_indexes": ("INDEXES",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", )
|
|
RETURN_NAMES = ("images_after_insert", )
|
|
FUNCTION = "insert"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
This node is designed to be use with node FilterZeroMasksAndCorrespondingImages
|
|
It inserts the images_to_insert into images according to insert_indexes
|
|
|
|
Returns:
|
|
images_after_insert: updated original images with origonal sequence order
|
|
"""
|
|
|
|
def insert(self, images, images_to_insert, insert_indexes):
|
|
images_after_insert = images
|
|
|
|
if images_to_insert is not None and insert_indexes is not None:
|
|
images_to_insert_num = len(images_to_insert)
|
|
insert_indexes_num = len(insert_indexes)
|
|
if images_to_insert_num == insert_indexes_num:
|
|
images_after_insert = []
|
|
|
|
i_images = 0
|
|
for i in range(len(images) + images_to_insert_num):
|
|
if i in insert_indexes:
|
|
images_after_insert.append(images_to_insert[insert_indexes.index(i)])
|
|
else:
|
|
images_after_insert.append(images[i_images])
|
|
i_images += 1
|
|
|
|
images_after_insert = torch.stack(images_after_insert, dim=0)
|
|
|
|
else:
|
|
print(f"[WARNING] skip this node, due to number of images_to_insert ({images_to_insert_num}) is not equal to number of insert_indexes ({insert_indexes_num})")
|
|
|
|
|
|
return (images_after_insert, )
|
|
|
|
class BatchUncropAdvanced:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"original_images": ("IMAGE",),
|
|
"cropped_images": ("IMAGE",),
|
|
"cropped_masks": ("MASK",),
|
|
"combined_crop_mask": ("MASK",),
|
|
"bboxes": ("BBOX",),
|
|
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"use_combined_mask": ("BOOLEAN", {"default": False}),
|
|
"use_square_mask": ("BOOLEAN", {"default": True}),
|
|
},
|
|
"optional": {
|
|
"combined_bounding_box": ("BBOX", {"default": None}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "uncrop"
|
|
CATEGORY = "KJNodes/masking"
|
|
|
|
|
|
def uncrop(self, original_images, cropped_images, cropped_masks, combined_crop_mask, bboxes, border_blending, crop_rescale, use_combined_mask, use_square_mask, combined_bounding_box = None):
|
|
|
|
def inset_border(image, border_width=20, border_color=(0)):
|
|
width, height = image.size
|
|
bordered_image = Image.new(image.mode, (width, height), border_color)
|
|
bordered_image.paste(image, (0, 0))
|
|
draw = ImageDraw.Draw(bordered_image)
|
|
draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
|
|
return bordered_image
|
|
|
|
if len(original_images) != len(cropped_images):
|
|
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
|
|
|
|
|
|
if len(bboxes) > len(original_images):
|
|
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
|
|
bboxes = bboxes[:len(original_images)]
|
|
elif len(bboxes) < len(original_images):
|
|
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
|
|
|
|
crop_imgs = tensor2pil(cropped_images)
|
|
input_images = tensor2pil(original_images)
|
|
out_images = []
|
|
|
|
for i in range(len(input_images)):
|
|
img = input_images[i]
|
|
crop = crop_imgs[i]
|
|
bbox = bboxes[i]
|
|
|
|
if use_combined_mask:
|
|
bb_x, bb_y, bb_width, bb_height = combined_bounding_box[0]
|
|
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
|
|
mask = combined_crop_mask[i]
|
|
else:
|
|
bb_x, bb_y, bb_width, bb_height = bbox
|
|
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
|
|
mask = cropped_masks[i]
|
|
|
|
|
|
scale_x = scale_y = crop_rescale
|
|
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
|
|
|
|
|
|
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
|
|
crop_img = crop.convert("RGB")
|
|
|
|
|
|
if border_blending > 1.0:
|
|
border_blending = 1.0
|
|
elif border_blending < 0.0:
|
|
border_blending = 0.0
|
|
|
|
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
|
|
blend = img.convert("RGBA")
|
|
|
|
if use_square_mask:
|
|
mask = Image.new("L", img.size, 0)
|
|
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
|
|
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
|
|
mask.paste(mask_block, paste_region)
|
|
else:
|
|
original_mask = tensor2pil(mask)[0]
|
|
original_mask = original_mask.resize((paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]))
|
|
mask = Image.new("L", img.size, 0)
|
|
mask.paste(original_mask, paste_region)
|
|
|
|
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
|
|
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
|
|
|
|
blend.paste(crop_img, paste_region)
|
|
blend.putalpha(mask)
|
|
|
|
img = Image.alpha_composite(img.convert("RGBA"), blend)
|
|
out_images.append(img.convert("RGB"))
|
|
|
|
return (pil2tensor(out_images),)
|
|
|
|
class SplitBboxes:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"bboxes": ("BBOX",),
|
|
"index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("BBOX","BBOX",)
|
|
RETURN_NAMES = ("bboxes_a","bboxes_b",)
|
|
FUNCTION = "splitbbox"
|
|
CATEGORY = "KJNodes/masking"
|
|
DESCRIPTION = """
|
|
Splits the specified bbox list at the given index into two lists.
|
|
"""
|
|
|
|
def splitbbox(self, bboxes, index):
|
|
bboxes_a = bboxes[:index]
|
|
bboxes_b = bboxes[index:]
|
|
|
|
return (bboxes_a, bboxes_b,)
|
|
|
|
class BboxToInt:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"bboxes": ("BBOX",),
|
|
"index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("INT","INT","INT","INT","INT","INT",)
|
|
RETURN_NAMES = ("x_min","y_min","width","height", "center_x","center_y",)
|
|
FUNCTION = "bboxtoint"
|
|
CATEGORY = "KJNodes/masking"
|
|
DESCRIPTION = """
|
|
Returns selected index from bounding box list as integers.
|
|
"""
|
|
def bboxtoint(self, bboxes, index):
|
|
x_min, y_min, width, height = bboxes[index]
|
|
center_x = int(x_min + width / 2)
|
|
center_y = int(y_min + height / 2)
|
|
|
|
return (x_min, y_min, width, height, center_x, center_y,)
|
|
|
|
class BboxVisualize:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE",),
|
|
"bboxes": ("BBOX",),
|
|
"line_width": ("INT", {"default": 1,"min": 1, "max": 10, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("images",)
|
|
FUNCTION = "visualizebbox"
|
|
DESCRIPTION = """
|
|
Visualizes the specified bbox on the image.
|
|
"""
|
|
|
|
CATEGORY = "KJNodes/masking"
|
|
|
|
def visualizebbox(self, bboxes, images, line_width):
|
|
image_list = []
|
|
for image, bbox in zip(images, bboxes):
|
|
x_min, y_min, width, height = bbox
|
|
|
|
|
|
x_min = int(x_min)
|
|
y_min = int(y_min)
|
|
width = int(width)
|
|
height = int(height)
|
|
|
|
|
|
image = image.permute(2, 0, 1)
|
|
|
|
|
|
img_with_bbox = image.clone()
|
|
|
|
|
|
color = torch.tensor([1, 0, 0], dtype=torch.float32)
|
|
|
|
|
|
if color.shape[0] != img_with_bbox.shape[0]:
|
|
color = color.unsqueeze(1).expand(-1, line_width)
|
|
|
|
|
|
for lw in range(line_width):
|
|
|
|
if y_min + lw < img_with_bbox.shape[1]:
|
|
img_with_bbox[:, y_min + lw, x_min:x_min + width] = color[:, None]
|
|
|
|
|
|
if y_min + height - lw < img_with_bbox.shape[1]:
|
|
img_with_bbox[:, y_min + height - lw, x_min:x_min + width] = color[:, None]
|
|
|
|
|
|
if x_min + lw < img_with_bbox.shape[2]:
|
|
img_with_bbox[:, y_min:y_min + height, x_min + lw] = color[:, None]
|
|
|
|
|
|
if x_min + width - lw < img_with_bbox.shape[2]:
|
|
img_with_bbox[:, y_min:y_min + height, x_min + width - lw] = color[:, None]
|
|
|
|
|
|
img_with_bbox = img_with_bbox.permute(1, 2, 0).unsqueeze(0)
|
|
image_list.append(img_with_bbox)
|
|
|
|
return (torch.cat(image_list, dim=0),)
|
|
|
|
return (torch.cat(image_list, dim=0),) |