|
"""Generates psychedelic color textures in the spirit of Blender's magic texture shader using Python/Numpy
|
|
|
|
https://github.com/cheind/magic-texture
|
|
"""
|
|
from typing import Tuple, Optional
|
|
import numpy as np
|
|
|
|
|
|
def coordinate_grid(shape: Tuple[int, int], dtype=np.float32):
|
|
"""Returns a three-dimensional coordinate grid of given shape for use in `magic`."""
|
|
x = np.linspace(-1, 1, shape[1], endpoint=True, dtype=dtype)
|
|
y = np.linspace(-1, 1, shape[0], endpoint=True, dtype=dtype)
|
|
X, Y = np.meshgrid(x, y)
|
|
XYZ = np.stack((X, Y, np.ones_like(X)), -1)
|
|
return XYZ
|
|
|
|
|
|
def random_transform(coords: np.ndarray, rng: np.random.Generator = None):
|
|
"""Returns randomly transformed coordinates"""
|
|
H, W = coords.shape[:2]
|
|
rng = rng or np.random.default_rng()
|
|
m = rng.uniform(-1.0, 1.0, size=(3, 3)).astype(coords.dtype)
|
|
return (coords.reshape(-1, 3) @ m.T).reshape(H, W, 3)
|
|
|
|
|
|
def magic(
|
|
coords: np.ndarray,
|
|
depth: Optional[int] = None,
|
|
distortion: Optional[int] = None,
|
|
rng: np.random.Generator = None,
|
|
):
|
|
"""Returns color magic color texture.
|
|
|
|
The implementation is based on Blender's (https://www.blender.org/) magic
|
|
texture shader. The following adaptions have been made:
|
|
- we exchange the nested if-cascade by a probabilistic iterative approach
|
|
|
|
Kwargs
|
|
------
|
|
coords: HxWx3 array
|
|
Coordinates transformed into colors by this method. See
|
|
`magictex.coordinate_grid` to generate the default.
|
|
depth: int (optional)
|
|
Number of transformations applied. Higher numbers lead to more
|
|
nested patterns. If not specified, randomly sampled.
|
|
distortion: float (optional)
|
|
Distortion of patterns. Larger values indicate more distortion,
|
|
lower values tend to generate smoother patterns. If not specified,
|
|
randomly sampled.
|
|
rng: np.random.Generator
|
|
Optional random generator to draw samples from.
|
|
|
|
Returns
|
|
-------
|
|
colors: HxWx3 array
|
|
Three channel color image in range [0,1]
|
|
"""
|
|
rng = rng or np.random.default_rng()
|
|
if distortion is None:
|
|
distortion = rng.uniform(1, 4)
|
|
if depth is None:
|
|
depth = rng.integers(1, 5)
|
|
|
|
H, W = coords.shape[:2]
|
|
XYZ = coords
|
|
x = np.sin((XYZ[..., 0] + XYZ[..., 1] + XYZ[..., 2]) * distortion)
|
|
y = np.cos((-XYZ[..., 0] + XYZ[..., 1] - XYZ[..., 2]) * distortion)
|
|
z = -np.cos((-XYZ[..., 0] - XYZ[..., 1] + XYZ[..., 2]) * distortion)
|
|
|
|
if depth > 0:
|
|
x *= distortion
|
|
y *= distortion
|
|
z *= distortion
|
|
y = -np.cos(x - y + z)
|
|
y *= distortion
|
|
|
|
xyz = [x, y, z]
|
|
fns = [np.cos, np.sin]
|
|
for _ in range(1, depth):
|
|
axis = rng.choice(3)
|
|
fn = fns[rng.choice(2)]
|
|
signs = rng.binomial(n=1, p=0.5, size=4) * 2 - 1
|
|
|
|
xyz[axis] = signs[-1] * fn(
|
|
signs[0] * xyz[0] + signs[1] * xyz[1] + signs[2] * xyz[2]
|
|
)
|
|
xyz[axis] *= distortion
|
|
|
|
x, y, z = xyz
|
|
x /= 2 * distortion
|
|
y /= 2 * distortion
|
|
z /= 2 * distortion
|
|
c = 0.5 - np.stack((x, y, z), -1)
|
|
np.clip(c, 0, 1.0)
|
|
return c |