|
'''
|
|
* Copyright (c) 2022, salesforce.com, inc.
|
|
* All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
* By Junnan Li
|
|
'''
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
from .blip_vit import VisionTransformer, interpolate_pos_embed
|
|
from .blip_med import BertConfig, BertModel, BertLMHeadModel
|
|
from transformers import BertTokenizer
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
import os
|
|
from urllib.parse import urlparse
|
|
from timm.models.hub import download_cached_file
|
|
import numpy as np
|
|
|
|
from pathlib import Path
|
|
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
|
|
|
class BLIP_Base(nn.Module):
|
|
def __init__(self,
|
|
med_config = Path(LOCAL_PATH, 'blip_configs/med_config.json'),
|
|
image_size = 224,
|
|
vit = 'base',
|
|
vit_grad_ckpt = False,
|
|
vit_ckpt_layer = 0,
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
|
self.tokenizer = init_tokenizer()
|
|
med_config = BertConfig.from_json_file(med_config)
|
|
med_config.encoder_width = vision_width
|
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
|
|
|
|
|
def forward(self, image, caption, mode):
|
|
|
|
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
|
|
text = self.tokenizer(caption, return_tensors="pt").to(image.device)
|
|
|
|
if mode=='image':
|
|
|
|
image_embeds = self.visual_encoder(image)
|
|
return image_embeds
|
|
|
|
elif mode=='text':
|
|
|
|
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
|
return_dict = True, mode = 'text')
|
|
return text_output.last_hidden_state
|
|
|
|
elif mode=='multimodal':
|
|
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
|
|
|
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
|
output = self.text_encoder(text.input_ids,
|
|
attention_mask = text.attention_mask,
|
|
encoder_hidden_states = image_embeds,
|
|
encoder_attention_mask = image_atts,
|
|
return_dict = True,
|
|
)
|
|
return output.last_hidden_state
|
|
|
|
|
|
|
|
class BLIP_Decoder(nn.Module):
|
|
def __init__(self,
|
|
med_config = Path(LOCAL_PATH, 'blip_configs/med_config.json'),
|
|
image_size = 384,
|
|
vit = 'base',
|
|
vit_grad_ckpt = False,
|
|
vit_ckpt_layer = 0,
|
|
prompt = 'a picture of ',
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
|
self.tokenizer = init_tokenizer()
|
|
med_config = BertConfig.from_json_file(med_config)
|
|
med_config.encoder_width = vision_width
|
|
self.text_decoder = BertLMHeadModel(config=med_config)
|
|
|
|
self.prompt = prompt
|
|
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
|
|
|
|
|
|
def forward(self, image, caption):
|
|
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
|
|
|
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
|
|
|
|
text.input_ids[:,0] = self.tokenizer.bos_token_id
|
|
|
|
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
|
|
decoder_targets[:,:self.prompt_length] = -100
|
|
|
|
decoder_output = self.text_decoder(text.input_ids,
|
|
attention_mask = text.attention_mask,
|
|
encoder_hidden_states = image_embeds,
|
|
encoder_attention_mask = image_atts,
|
|
labels = decoder_targets,
|
|
return_dict = True,
|
|
)
|
|
loss_lm = decoder_output.loss
|
|
|
|
return loss_lm
|
|
|
|
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
|
|
image_embeds = self.visual_encoder(image)
|
|
|
|
if not sample:
|
|
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
|
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
|
|
|
|
prompt = [self.prompt] * image.size(0)
|
|
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
|
|
input_ids[:,0] = self.tokenizer.bos_token_id
|
|
input_ids = input_ids[:, :-1]
|
|
|
|
if sample:
|
|
|
|
outputs = self.text_decoder.generate(input_ids=input_ids,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
do_sample=True,
|
|
top_p=top_p,
|
|
num_return_sequences=1,
|
|
eos_token_id=self.tokenizer.sep_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
repetition_penalty=1.1,
|
|
**model_kwargs)
|
|
else:
|
|
|
|
outputs = self.text_decoder.generate(input_ids=input_ids,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
num_beams=num_beams,
|
|
eos_token_id=self.tokenizer.sep_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
repetition_penalty=repetition_penalty,
|
|
**model_kwargs)
|
|
|
|
captions = []
|
|
for output in outputs:
|
|
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
|
captions.append(caption[len(self.prompt):])
|
|
return captions
|
|
|
|
|
|
def blip_decoder(pretrained='',**kwargs):
|
|
model = BLIP_Decoder(**kwargs)
|
|
if pretrained:
|
|
model,msg = load_checkpoint(model,pretrained)
|
|
assert(len(msg.missing_keys)==0)
|
|
return model
|
|
|
|
def blip_feature_extractor(pretrained='',**kwargs):
|
|
model = BLIP_Base(**kwargs)
|
|
if pretrained:
|
|
model,msg = load_checkpoint(model,pretrained)
|
|
assert(len(msg.missing_keys)==0)
|
|
return model
|
|
|
|
def init_tokenizer():
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
|
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
|
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
|
return tokenizer
|
|
|
|
|
|
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
|
|
|
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
|
if vit=='base':
|
|
vision_width = 768
|
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
|
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
|
drop_path_rate=0 or drop_path_rate
|
|
)
|
|
elif vit=='large':
|
|
vision_width = 1024
|
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
|
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
|
drop_path_rate=0.1 or drop_path_rate
|
|
)
|
|
return visual_encoder, vision_width
|
|
|
|
def is_url(url_or_filename):
|
|
parsed = urlparse(url_or_filename)
|
|
return parsed.scheme in ("http", "https")
|
|
|
|
def load_checkpoint(model,url_or_filename):
|
|
if is_url(url_or_filename):
|
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
|
checkpoint = torch.load(cached_file, map_location='cpu')
|
|
elif os.path.isfile(url_or_filename):
|
|
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
|
else:
|
|
raise RuntimeError('checkpoint url or path is invalid')
|
|
|
|
state_dict = checkpoint['model']
|
|
|
|
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
|
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
|
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
|
model.visual_encoder_m)
|
|
for key in model.state_dict().keys():
|
|
if key in state_dict.keys():
|
|
if state_dict[key].shape!=model.state_dict()[key].shape:
|
|
del state_dict[key]
|
|
|
|
msg = model.load_state_dict(state_dict,strict=False)
|
|
print('load checkpoint from %s'%url_or_filename)
|
|
return model,msg
|
|
|
|
|
|
|
|
class BLIP_VQA(nn.Module):
|
|
def __init__(self,
|
|
med_config = Path(LOCAL_PATH, 'blip_configs/med_config.json'),
|
|
image_size = 480,
|
|
vit = 'base',
|
|
vit_grad_ckpt = False,
|
|
vit_ckpt_layer = 0,
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
|
self.tokenizer = init_tokenizer()
|
|
|
|
encoder_config = BertConfig.from_json_file(med_config)
|
|
encoder_config.encoder_width = vision_width
|
|
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
|
|
|
decoder_config = BertConfig.from_json_file(med_config)
|
|
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
|
|
|
|
|
def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
|
|
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
|
|
|
question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
|
|
return_tensors="pt").to(image.device)
|
|
question.input_ids[:,0] = self.tokenizer.enc_token_id
|
|
|
|
if train:
|
|
'''
|
|
n: number of answers for each question
|
|
weights: weight for each answer
|
|
'''
|
|
answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
|
|
answer.input_ids[:,0] = self.tokenizer.bos_token_id
|
|
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
|
|
|
|
question_output = self.text_encoder(question.input_ids,
|
|
attention_mask = question.attention_mask,
|
|
encoder_hidden_states = image_embeds,
|
|
encoder_attention_mask = image_atts,
|
|
return_dict = True)
|
|
|
|
question_states = []
|
|
question_atts = []
|
|
for b, n in enumerate(n):
|
|
question_states += [question_output.last_hidden_state[b]]*n
|
|
question_atts += [question.attention_mask[b]]*n
|
|
question_states = torch.stack(question_states,0)
|
|
question_atts = torch.stack(question_atts,0)
|
|
|
|
answer_output = self.text_decoder(answer.input_ids,
|
|
attention_mask = answer.attention_mask,
|
|
encoder_hidden_states = question_states,
|
|
encoder_attention_mask = question_atts,
|
|
labels = answer_targets,
|
|
return_dict = True,
|
|
reduction = 'none',
|
|
)
|
|
|
|
loss = weights * answer_output.loss
|
|
loss = loss.sum()/image.size(0)
|
|
|
|
return loss
|
|
|
|
|
|
else:
|
|
question_output = self.text_encoder(question.input_ids,
|
|
attention_mask = question.attention_mask,
|
|
encoder_hidden_states = image_embeds,
|
|
encoder_attention_mask = image_atts,
|
|
return_dict = True)
|
|
|
|
if inference=='generate':
|
|
num_beams = 3
|
|
question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
|
|
question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
|
|
model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
|
|
|
|
bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
|
|
|
|
outputs = self.text_decoder.generate(input_ids=bos_ids,
|
|
max_length=10,
|
|
min_length=1,
|
|
num_beams=num_beams,
|
|
eos_token_id=self.tokenizer.sep_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
**model_kwargs)
|
|
|
|
answers = []
|
|
for output in outputs:
|
|
answer = self.tokenizer.decode(output, skip_special_tokens=True)
|
|
answers.append(answer)
|
|
return answers
|
|
|
|
elif inference=='rank':
|
|
max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
|
|
answer.input_ids, answer.attention_mask, k_test)
|
|
return max_ids
|
|
|
|
|
|
|
|
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
|
|
|
|
num_ques = question_states.size(0)
|
|
start_ids = answer_ids[0,0].repeat(num_ques,1)
|
|
|
|
start_output = self.text_decoder(start_ids,
|
|
encoder_hidden_states = question_states,
|
|
encoder_attention_mask = question_atts,
|
|
return_dict = True,
|
|
reduction = 'none')
|
|
logits = start_output.logits[:,0,:]
|
|
|
|
|
|
|
|
answer_first_token = answer_ids[:,1]
|
|
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
|
|
topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
|
|
|
|
|
|
input_ids = []
|
|
input_atts = []
|
|
for b, topk_id in enumerate(topk_ids):
|
|
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
|
|
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
|
|
input_ids = torch.cat(input_ids,dim=0)
|
|
input_atts = torch.cat(input_atts,dim=0)
|
|
|
|
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
|
|
|
|
|
|
question_states = tile(question_states, 0, k)
|
|
question_atts = tile(question_atts, 0, k)
|
|
|
|
output = self.text_decoder(input_ids,
|
|
attention_mask = input_atts,
|
|
encoder_hidden_states = question_states,
|
|
encoder_attention_mask = question_atts,
|
|
labels = targets_ids,
|
|
return_dict = True,
|
|
reduction = 'none')
|
|
|
|
log_probs_sum = -output.loss
|
|
log_probs_sum = log_probs_sum.view(num_ques,k)
|
|
|
|
max_topk_ids = log_probs_sum.argmax(dim=1)
|
|
max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
|
|
|
|
return max_ids
|
|
|
|
|
|
def blip_vqa(pretrained='',**kwargs):
|
|
model = BLIP_VQA(**kwargs)
|
|
if pretrained:
|
|
model,msg = load_checkpoint(model,pretrained)
|
|
|
|
return model
|
|
|
|
|
|
def tile(x, dim, n_tile):
|
|
init_dim = x.size(dim)
|
|
repeat_idx = [1] * x.dim()
|
|
repeat_idx[dim] = n_tile
|
|
x = x.repeat(*(repeat_idx))
|
|
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
|
|
return torch.index_select(x, dim, order_index.to(x.device))
|
|
|
|
|
|
|