|
import traceback
|
|
|
|
import comfy
|
|
import nodes
|
|
import torch
|
|
import re
|
|
|
|
from . import prompt_support
|
|
from .libs import utils, common
|
|
|
|
|
|
class RegionalPromptSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"basic_pipe": ("BASIC_PIPE",),
|
|
"mask": ("MASK",),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
|
|
"scheduler": (common.SCHEDULERS,),
|
|
"wildcard_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "placeholder": "wildcard prompt"}),
|
|
"controlnet_in_pipe": ("BOOLEAN", {"default": False, "label_on": "Keep", "label_off": "Override"}),
|
|
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
},
|
|
"optional": {
|
|
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"variation_method": (["linear", "slerp"],),
|
|
"scheduler_func_opt": ("SCHEDULER_FUNC",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("REGIONAL_PROMPTS", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(basic_pipe, mask, cfg, sampler_name, scheduler, wildcard_prompt,
|
|
controlnet_in_pipe=False, sigma_factor=1.0, variation_seed=0, variation_strength=0.0, variation_method='linear', scheduler_func_opt=None):
|
|
if 'RegionalPrompt' not in nodes.NODE_CLASS_MAPPINGS:
|
|
utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
|
|
"To use 'RegionalPromptSimple' node, 'Impact Pack' extension is required.")
|
|
raise Exception(f"[ERROR] To use RegionalPromptSimple, you need to install 'ComfyUI-Impact-Pack'")
|
|
|
|
model, clip, vae, positive, negative = basic_pipe
|
|
|
|
iwe = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode']()
|
|
kap = nodes.NODE_CLASS_MAPPINGS['KSamplerAdvancedProvider']()
|
|
rp = nodes.NODE_CLASS_MAPPINGS['RegionalPrompt']()
|
|
|
|
if wildcard_prompt != "":
|
|
model, clip, new_positive, _ = iwe.doit(model=model, clip=clip, populated_text=wildcard_prompt, seed=None)
|
|
|
|
if controlnet_in_pipe:
|
|
prev_cnet = None
|
|
for t in positive:
|
|
if 'control' in t[1] and 'control_apply_to_uncond' in t[1]:
|
|
prev_cnet = t[1]['control'], t[1]['control_apply_to_uncond']
|
|
break
|
|
|
|
if prev_cnet is not None:
|
|
for t in new_positive:
|
|
t[1]['control'] = prev_cnet[0]
|
|
t[1]['control_apply_to_uncond'] = prev_cnet[1]
|
|
|
|
else:
|
|
new_positive = positive
|
|
|
|
basic_pipe = model, clip, vae, new_positive, negative
|
|
|
|
sampler = kap.doit(cfg, sampler_name, scheduler, basic_pipe, sigma_factor=sigma_factor, scheduler_func_opt=scheduler_func_opt)[0]
|
|
try:
|
|
regional_prompts = rp.doit(mask, sampler, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method)[0]
|
|
except:
|
|
raise Exception("[Inspire-Pack] ERROR: Impact Pack is outdated. Update Impact Pack to latest version to use this.")
|
|
|
|
return (regional_prompts, )
|
|
|
|
|
|
def color_to_mask(color_mask, mask_color):
|
|
try:
|
|
if mask_color.startswith("#"):
|
|
selected = int(mask_color[1:], 16)
|
|
else:
|
|
selected = int(mask_color, 10)
|
|
except Exception:
|
|
raise Exception(f"[ERROR] Invalid mask_color value. mask_color should be a color value for RGB")
|
|
|
|
temp = (torch.clamp(color_mask, 0, 1.0) * 255.0).round().to(torch.int)
|
|
temp = torch.bitwise_left_shift(temp[:, :, :, 0], 16) + torch.bitwise_left_shift(temp[:, :, :, 1], 8) + temp[:, :, :, 2]
|
|
mask = torch.where(temp == selected, 1.0, 0.0)
|
|
return mask
|
|
|
|
|
|
class RegionalPromptColorMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"basic_pipe": ("BASIC_PIPE",),
|
|
"color_mask": ("IMAGE",),
|
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
|
|
"scheduler": (common.SCHEDULERS,),
|
|
"wildcard_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "placeholder": "wildcard prompt"}),
|
|
"controlnet_in_pipe": ("BOOLEAN", {"default": False, "label_on": "Keep", "label_off": "Override"}),
|
|
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
},
|
|
"optional": {
|
|
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"variation_method": (["linear", "slerp"],),
|
|
"scheduler_func_opt": ("SCHEDULER_FUNC",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("REGIONAL_PROMPTS", "MASK")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(basic_pipe, color_mask, mask_color, cfg, sampler_name, scheduler, wildcard_prompt,
|
|
controlnet_in_pipe=False, sigma_factor=1.0, variation_seed=0, variation_strength=0.0, variation_method="linear", scheduler_func_opt=None):
|
|
mask = color_to_mask(color_mask, mask_color)
|
|
rp = RegionalPromptSimple().doit(basic_pipe, mask, cfg, sampler_name, scheduler, wildcard_prompt, controlnet_in_pipe,
|
|
sigma_factor=sigma_factor, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method, scheduler_func_opt=scheduler_func_opt)[0]
|
|
return rp, mask
|
|
|
|
|
|
class RegionalConditioningSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"clip": ("CLIP", ),
|
|
"mask": ("MASK",),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(clip, mask, strength, set_cond_area, prompt):
|
|
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0]
|
|
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0]
|
|
return (conditioning, )
|
|
|
|
|
|
class RegionalConditioningColorMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"clip": ("CLIP", ),
|
|
"color_mask": ("IMAGE",),
|
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}),
|
|
},
|
|
"optional": {
|
|
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "MASK")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(clip, color_mask, mask_color, strength, set_cond_area, prompt, dilation=0):
|
|
mask = color_to_mask(color_mask, mask_color)
|
|
|
|
if dilation != 0:
|
|
mask = utils.dilate_mask(mask, dilation)
|
|
|
|
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0]
|
|
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0]
|
|
return conditioning, mask
|
|
|
|
|
|
class ToIPAdapterPipe:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"ipadapter": ("IPADAPTER", ),
|
|
"model": ("MODEL",),
|
|
},
|
|
"optional": {
|
|
"clip_vision": ("CLIP_VISION",),
|
|
"insightface": ("INSIGHTFACE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IPADAPTER_PIPE",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
@staticmethod
|
|
def doit(ipadapter, model, clip_vision, insightface=None):
|
|
pipe = ipadapter, model, clip_vision, insightface, lambda x: x
|
|
|
|
return (pipe,)
|
|
|
|
|
|
class FromIPAdapterPipe:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"ipadapter_pipe": ("IPADAPTER_PIPE", ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IPADAPTER", "MODEL", "CLIP_VISION", "INSIGHTFACE")
|
|
RETURN_NAMES = ("ipadapter", "model", "clip_vision", "insight_face")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, ipadapter_pipe):
|
|
ipadapter, model, clip_vision, insightface, _ = ipadapter_pipe
|
|
return ipadapter, model, clip_vision, insightface
|
|
|
|
|
|
class IPAdapterConditioning:
|
|
def __init__(self, mask, weight, weight_type, noise=None, image=None, neg_image=None, embeds=None, start_at=0.0, end_at=1.0, combine_embeds='concat', unfold_batch=False, weight_v2=False, neg_embeds=None):
|
|
self.mask = mask
|
|
self.image = image
|
|
self.neg_image = neg_image
|
|
self.embeds = embeds
|
|
self.neg_embeds = neg_embeds
|
|
self.weight = weight
|
|
self.noise = noise
|
|
self.weight_type = weight_type
|
|
self.start_at = start_at
|
|
self.end_at = end_at
|
|
self.unfold_batch = unfold_batch
|
|
self.weight_v2 = weight_v2
|
|
self.combine_embeds = combine_embeds
|
|
|
|
def doit(self, ipadapter_pipe):
|
|
ipadapter, model, clip_vision, insightface, _ = ipadapter_pipe
|
|
|
|
if 'IPAdapterAdvanced' not in nodes.NODE_CLASS_MAPPINGS:
|
|
utils.try_install_custom_node('https://github.com/cubiq/ComfyUI_IPAdapter_plus',
|
|
"To use 'Regional IPAdapter' node, 'ComfyUI IPAdapter Plus' extension is required.")
|
|
raise Exception(f"[ERROR] To use IPAdapterModelHelper, you need to install 'ComfyUI IPAdapter Plus'")
|
|
|
|
if self.embeds is None:
|
|
obj = nodes.NODE_CLASS_MAPPINGS['IPAdapterAdvanced']
|
|
model = obj().apply_ipadapter(model=model, ipadapter=ipadapter, weight=self.weight, weight_type=self.weight_type,
|
|
start_at=self.start_at, end_at=self.end_at, combine_embeds=self.combine_embeds,
|
|
clip_vision=clip_vision, image=self.image, image_negative=self.neg_image, attn_mask=self.mask,
|
|
insightface=insightface, weight_faceidv2=self.weight_v2)[0]
|
|
else:
|
|
obj = nodes.NODE_CLASS_MAPPINGS['IPAdapterEmbeds']
|
|
model = obj().apply_ipadapter(model=model, ipadapter=ipadapter, pos_embed=self.embeds, weight=self.weight, weight_type=self.weight_type,
|
|
start_at=self.start_at, end_at=self.end_at, neg_embed=self.neg_embeds,
|
|
attn_mask=self.mask, clip_vision=clip_vision)[0]
|
|
|
|
return model
|
|
|
|
|
|
IPADAPTER_WEIGHT_TYPES_CACHE = None
|
|
|
|
|
|
def IPADAPTER_WEIGHT_TYPES():
|
|
global IPADAPTER_WEIGHT_TYPES_CACHE
|
|
|
|
if IPADAPTER_WEIGHT_TYPES_CACHE is None:
|
|
try:
|
|
IPADAPTER_WEIGHT_TYPES_CACHE = nodes.NODE_CLASS_MAPPINGS['IPAdapterAdvanced']().INPUT_TYPES()['required']['weight_type'][0]
|
|
except Exception:
|
|
print(f"[Inspire Pack] IPAdapterPlus is not installed.")
|
|
IPADAPTER_WEIGHT_TYPES_CACHE = ["IPAdapterPlus is not installed"]
|
|
|
|
return IPADAPTER_WEIGHT_TYPES_CACHE
|
|
|
|
|
|
class RegionalIPAdapterMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"mask": ("MASK",),
|
|
|
|
"image": ("IMAGE",),
|
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
|
|
"noise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
|
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"unfold_batch": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"faceid_v2": ("BOOLEAN", {"default": False}),
|
|
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}),
|
|
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
|
|
"neg_image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(mask, image, weight, noise, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, faceid_v2=False, weight_v2=False, combine_embeds="concat", neg_image=None):
|
|
cond = IPAdapterConditioning(mask, weight, weight_type, noise=noise, image=image, neg_image=neg_image, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, weight_v2=weight_v2, combine_embeds=combine_embeds)
|
|
return (cond, )
|
|
|
|
|
|
class RegionalIPAdapterColorMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"color_mask": ("IMAGE",),
|
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
|
|
|
|
"image": ("IMAGE",),
|
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
|
|
"noise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
|
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"unfold_batch": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"faceid_v2": ("BOOLEAN", {"default": False }),
|
|
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}),
|
|
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
|
|
"neg_image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", "MASK")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(color_mask, mask_color, image, weight, noise, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, faceid_v2=False, weight_v2=False, combine_embeds="concat", neg_image=None):
|
|
mask = color_to_mask(color_mask, mask_color)
|
|
cond = IPAdapterConditioning(mask, weight, weight_type, noise=noise, image=image, neg_image=neg_image, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, weight_v2=weight_v2, combine_embeds=combine_embeds)
|
|
return (cond, mask)
|
|
|
|
|
|
class RegionalIPAdapterEncodedMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"mask": ("MASK",),
|
|
|
|
"embeds": ("EMBEDS",),
|
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
|
|
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
|
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"unfold_batch": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"neg_embeds": ("EMBEDS",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(mask, embeds, weight, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, neg_embeds=None):
|
|
cond = IPAdapterConditioning(mask, weight, weight_type, embeds=embeds, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, neg_embeds=neg_embeds)
|
|
return (cond, )
|
|
|
|
|
|
class RegionalIPAdapterEncodedColorMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"color_mask": ("IMAGE",),
|
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
|
|
|
|
"embeds": ("EMBEDS",),
|
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
|
|
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
|
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"unfold_batch": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"neg_embeds": ("EMBEDS",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", "MASK")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(color_mask, mask_color, embeds, weight, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, neg_embeds=None):
|
|
mask = color_to_mask(color_mask, mask_color)
|
|
cond = IPAdapterConditioning(mask, weight, weight_type, embeds=embeds, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, neg_embeds=neg_embeds)
|
|
return (cond, mask)
|
|
|
|
|
|
class ApplyRegionalIPAdapters:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"ipadapter_pipe": ("IPADAPTER_PIPE",),
|
|
"regional_ipadapter1": ("REGIONAL_IPADAPTER", ),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(**kwargs):
|
|
ipadapter_pipe = kwargs['ipadapter_pipe']
|
|
ipadapter, model, clip_vision, insightface, lora_loader = ipadapter_pipe
|
|
|
|
del kwargs['ipadapter_pipe']
|
|
|
|
for k, v in kwargs.items():
|
|
ipadapter_pipe = ipadapter, model, clip_vision, insightface, lora_loader
|
|
model = v.doit(ipadapter_pipe)
|
|
|
|
return (model, )
|
|
|
|
|
|
class RegionalSeedExplorerMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"mask": ("MASK",),
|
|
|
|
"noise": ("NOISE",),
|
|
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
|
|
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
|
|
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"noise_mode": (["GPU(=A1111)", "CPU"],),
|
|
},
|
|
"optional":
|
|
{"variation_method": (["linear", "slerp"],), }
|
|
}
|
|
|
|
RETURN_TYPES = ("NOISE",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(mask, noise, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode, variation_method='linear'):
|
|
device = comfy.model_management.get_torch_device()
|
|
noise_device = "cpu" if noise_mode == "CPU" else device
|
|
|
|
noise = noise.to(device)
|
|
mask = mask.to(device)
|
|
|
|
if len(mask.shape) == 2:
|
|
mask = mask.unsqueeze(0)
|
|
|
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noise.shape[2], noise.shape[3]), mode="bilinear").squeeze(0)
|
|
|
|
try:
|
|
seed_prompt = seed_prompt.replace("\n", "")
|
|
items = seed_prompt.strip().split(",")
|
|
|
|
if items == ['']:
|
|
items = []
|
|
|
|
if enable_additional:
|
|
items.append((additional_seed, additional_strength))
|
|
|
|
noise = prompt_support.SeedExplorer.apply_variation(noise, items, noise_device, mask, variation_method=variation_method)
|
|
except Exception:
|
|
print(f"[ERROR] IGNORED: RegionalSeedExplorerColorMask is failed.")
|
|
traceback.print_exc()
|
|
|
|
noise = noise.cpu()
|
|
mask.cpu()
|
|
return (noise,)
|
|
|
|
|
|
class RegionalSeedExplorerColorMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"color_mask": ("IMAGE",),
|
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
|
|
|
|
"noise": ("NOISE",),
|
|
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
|
|
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
|
|
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"noise_mode": (["GPU(=A1111)", "CPU"],),
|
|
},
|
|
"optional":
|
|
{"variation_method": (["linear", "slerp"],), }
|
|
}
|
|
|
|
RETURN_TYPES = ("NOISE", "MASK")
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(color_mask, mask_color, noise, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode, variation_method='linear'):
|
|
device = comfy.model_management.get_torch_device()
|
|
noise_device = "cpu" if noise_mode == "CPU" else device
|
|
|
|
color_mask = color_mask.to(device)
|
|
noise = noise.to(device)
|
|
|
|
mask = color_to_mask(color_mask, mask_color)
|
|
original_mask = mask
|
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noise.shape[2], noise.shape[3]), mode="bilinear").squeeze(0)
|
|
|
|
mask = mask.to(device)
|
|
|
|
try:
|
|
seed_prompt = seed_prompt.replace("\n", "")
|
|
items = seed_prompt.strip().split(",")
|
|
|
|
if items == ['']:
|
|
items = []
|
|
|
|
if enable_additional:
|
|
items.append((additional_seed, additional_strength))
|
|
|
|
noise = prompt_support.SeedExplorer.apply_variation(noise, items, noise_device, mask, variation_method=variation_method)
|
|
except Exception:
|
|
print(f"[ERROR] IGNORED: RegionalSeedExplorerColorMask is failed.")
|
|
traceback.print_exc()
|
|
|
|
color_mask.cpu()
|
|
noise = noise.cpu()
|
|
original_mask = original_mask.cpu()
|
|
return (noise, original_mask)
|
|
|
|
|
|
class ColorMaskToDepthMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"color_mask": ("IMAGE",),
|
|
"spec": ("STRING", {"multiline": True, "default": "#FF0000:1.0\n#000000:1.0"}),
|
|
"base_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0}),
|
|
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
|
|
"flatten_method": (["override", "sum", "max"],),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MASK", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
def doit(self, color_mask, spec, base_value, dilation, flatten_method):
|
|
specs = spec.split('\n')
|
|
pat = re.compile("(?P<color_code>#[A-F0-9]+):(?P<cfg>[0-9]+(.[0-9]*)?)")
|
|
|
|
masks = [torch.ones((1, color_mask.shape[1], color_mask.shape[2])) * base_value]
|
|
for x in specs:
|
|
match = pat.match(x)
|
|
if match:
|
|
mask = color_to_mask(color_mask=color_mask, mask_color=match['color_code']) * float(match['cfg'])
|
|
mask = utils.dilate_mask(mask, dilation)
|
|
masks.append(mask)
|
|
|
|
if masks:
|
|
masks = torch.cat(masks, dim=0)
|
|
if flatten_method == 'override':
|
|
masks = utils.flatten_non_zero_override(masks)
|
|
elif flatten_method == 'max':
|
|
masks = torch.max(masks, dim=0)[0]
|
|
else:
|
|
masks = torch.sum(masks, dim=0)
|
|
|
|
masks = torch.clamp(masks, min=0.0, max=1.0)
|
|
masks = masks.unsqueeze(0)
|
|
else:
|
|
masks = torch.tensor([])
|
|
|
|
return (masks, )
|
|
|
|
|
|
class RegionalCFG:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"model": ("MODEL",),
|
|
"mask": ("MASK",),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Regional"
|
|
|
|
@staticmethod
|
|
def doit(model, mask):
|
|
if len(mask.shape) == 2:
|
|
mask = mask.unsqueeze(0).unsqueeze(0)
|
|
elif len(mask.shape) == 3:
|
|
mask = mask.unsqueeze(0)
|
|
|
|
size = None
|
|
|
|
def regional_cfg(args):
|
|
nonlocal mask
|
|
nonlocal size
|
|
|
|
x = args['input']
|
|
|
|
if mask.device != x.device:
|
|
mask = mask.to(x.device)
|
|
|
|
if size != (x.shape[2], x.shape[3]):
|
|
size = (x.shape[2], x.shape[3])
|
|
mask = torch.nn.functional.interpolate(mask, size=size, mode='bilinear', align_corners=False)
|
|
|
|
cond_pred = args["cond_denoised"]
|
|
uncond_pred = args["uncond_denoised"]
|
|
cond_scale = args["cond_scale"]
|
|
|
|
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * mask
|
|
|
|
return x - cfg_result
|
|
|
|
m = model.clone()
|
|
m.set_model_sampler_cfg_function(regional_cfg)
|
|
return (m,)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"RegionalPromptSimple //Inspire": RegionalPromptSimple,
|
|
"RegionalPromptColorMask //Inspire": RegionalPromptColorMask,
|
|
"RegionalConditioningSimple //Inspire": RegionalConditioningSimple,
|
|
"RegionalConditioningColorMask //Inspire": RegionalConditioningColorMask,
|
|
"RegionalIPAdapterMask //Inspire": RegionalIPAdapterMask,
|
|
"RegionalIPAdapterColorMask //Inspire": RegionalIPAdapterColorMask,
|
|
"RegionalIPAdapterEncodedMask //Inspire": RegionalIPAdapterEncodedMask,
|
|
"RegionalIPAdapterEncodedColorMask //Inspire": RegionalIPAdapterEncodedColorMask,
|
|
"RegionalSeedExplorerMask //Inspire": RegionalSeedExplorerMask,
|
|
"RegionalSeedExplorerColorMask //Inspire": RegionalSeedExplorerColorMask,
|
|
"ToIPAdapterPipe //Inspire": ToIPAdapterPipe,
|
|
"FromIPAdapterPipe //Inspire": FromIPAdapterPipe,
|
|
"ApplyRegionalIPAdapters //Inspire": ApplyRegionalIPAdapters,
|
|
"RegionalCFG //Inspire": RegionalCFG,
|
|
"ColorMaskToDepthMask //Inspire": ColorMaskToDepthMask,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"RegionalPromptSimple //Inspire": "Regional Prompt Simple (Inspire)",
|
|
"RegionalPromptColorMask //Inspire": "Regional Prompt By Color Mask (Inspire)",
|
|
"RegionalConditioningSimple //Inspire": "Regional Conditioning Simple (Inspire)",
|
|
"RegionalConditioningColorMask //Inspire": "Regional Conditioning By Color Mask (Inspire)",
|
|
"RegionalIPAdapterMask //Inspire": "Regional IPAdapter Mask (Inspire)",
|
|
"RegionalIPAdapterColorMask //Inspire": "Regional IPAdapter By Color Mask (Inspire)",
|
|
"RegionalIPAdapterEncodedMask //Inspire": "Regional IPAdapter Encoded Mask (Inspire)",
|
|
"RegionalIPAdapterEncodedColorMask //Inspire": "Regional IPAdapter Encoded By Color Mask (Inspire)",
|
|
"RegionalSeedExplorerMask //Inspire": "Regional Seed Explorer By Mask (Inspire)",
|
|
"RegionalSeedExplorerColorMask //Inspire": "Regional Seed Explorer By Color Mask (Inspire)",
|
|
"ToIPAdapterPipe //Inspire": "ToIPAdapterPipe (Inspire)",
|
|
"FromIPAdapterPipe //Inspire": "FromIPAdapterPipe (Inspire)",
|
|
"ApplyRegionalIPAdapters //Inspire": "Apply Regional IPAdapters (Inspire)",
|
|
"RegionalCFG //Inspire": "Regional CFG (Inspire)",
|
|
"ColorMaskToDepthMask //Inspire": "Color Mask To Depth Mask (Inspire)",
|
|
}
|
|
|