Spaces:
Runtime error
Runtime error
File size: 10,629 Bytes
186de06 891707d 186de06 8b63c36 186de06 79968f8 2bfba61 891707d 186de06 c80a7e2 186de06 1569bc7 186de06 5e6d68b 186de06 be7f0e5 186de06 1569bc7 186de06 1569bc7 5e6d68b 1569bc7 186de06 be7f0e5 186de06 79968f8 2bfba61 fdfa721 891707d 2bfba61 891707d fdfa721 186de06 891707d 2bfba61 186de06 2bfba61 891707d 186de06 891707d 2bfba61 891707d 2bfba61 891707d 186de06 891707d 2bfba61 186de06 2bfba61 891707d 186de06 891707d c80a7e2 186de06 891707d 186de06 891707d 186de06 891707d be7f0e5 8b63c36 891707d 186de06 891707d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import re
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import (
pipeline,
AutoModelForSequenceClassification,
AutoTokenizer,
AutoModelForCausalLM,
T5Tokenizer,
T5ForConditionalGeneration,
)
from sentence_transformers import SentenceTransformer
from bertopic import BERTopic
import faiss
import numpy as np
from datasets import load_dataset, Features, Value
# Initialize FastAPI app
app = FastAPI()
# Preprocessing function
def preprocess_text(text):
"""
Cleans and tokenizes text.
"""
text = re.sub(r"http\S+|www\S+|https\S+", "", text, flags=re.MULTILINE) # Remove URLs
text = re.sub(r"\s+", " ", text).strip() # Remove extra spaces
text = re.sub(r"[^\w\s]", "", text) # Remove punctuation
return text.lower()
# Content Classification Model
class ContentClassifier:
def __init__(self, model_name="bert-base-uncased"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.pipeline = pipeline("text-classification", model=self.model, tokenizer=self.tokenizer)
def classify(self, text):
"""
Classifies text into predefined categories.
"""
result = self.pipeline(text)
return result
# Relevance Detection Model
class RelevanceDetector:
def __init__(self, model_name="bert-base-uncased"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.pipeline = pipeline("text-classification", model=self.model, tokenizer=self.tokenizer)
def detect_relevance(self, text, threshold=0.5):
"""
Detects whether a text is relevant to a specific domain.
"""
result = self.pipeline(text)
return result[0]["label"] == "RELEVANT" and result[0]["score"] > threshold
# Topic Extraction Model using BERTopic
class TopicExtractor:
def __init__(self):
self.model = BERTopic()
def extract_topics(self, documents):
"""
Extracts topics from a list of documents.
"""
topics, probs = self.model.fit_transform(documents)
return self.model.get_topic_info()
# Summarization Model
class Summarizer:
def __init__(self, model_name="t5-small"):
self.tokenizer = T5Tokenizer.from_pretrained(model_name)
self.model = T5ForConditionalGeneration.from_pretrained(model_name)
def summarize(self, text, max_length=100):
"""
Summarizes a given text.
"""
inputs = self.tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = self.model.generate(inputs, max_length=max_length, min_length=25, length_penalty=2.0, num_beams=4)
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Search and Recommendation Model using FAISS
class SearchEngine:
def __init__(self, embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
self.model = SentenceTransformer(embedding_model)
self.index = None
self.documents = []
def build_index(self, docs):
"""
Builds a FAISS index for document retrieval.
"""
self.documents = docs
embeddings = self.model.encode(docs, convert_to_tensor=True, show_progress_bar=True)
self.index = faiss.IndexFlatL2(embeddings.shape[1])
self.index.add(embeddings.cpu().detach().numpy())
def search(self, query, top_k=5):
"""
Searches the index for the top_k most relevant documents.
"""
query_embedding = self.model.encode(query, convert_to_tensor=True)
distances, indices = self.index.search(query_embedding.cpu().detach().numpy().reshape(1, -1), top_k)
# Convert NumPy data types to native Python types
results = []
for i in indices[0]:
document = self.documents[i]
distance = float(distances[0][i]) # Convert numpy.float32 to float
results.append({"document": document, "distance": distance})
return results
class Chatbot:
def __init__(self, model_name="EleutherAI/gpt-neo-125M"):
"""
Initializes the chatbot with GPT-Neo.
"""
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
# Set pad_token to eos_token if not already defined
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def generate_response(self, prompt, max_length=100):
"""
Generates a response to a user query using GPT-Neo.
"""
# Tokenize the input prompt
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
# Generate the response
outputs = self.model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask, # Pass the attention mask
max_length=max_length,
num_return_sequences=1,
pad_token_id=self.tokenizer.pad_token_id, # Use the defined pad_token_id
)
# Decode the generated response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def handle_request(self, prompt):
"""
Handles user requests by determining the intent and delegating to the appropriate function.
"""
# Check if the user wants to search for something
if "search" in prompt.lower():
query = prompt.lower().replace("search", "").strip()
results = search_engine.search(query)
return {"type": "search", "results": results}
# Check if the user wants a summary
elif "summarize" in prompt.lower() or "summary" in prompt.lower():
text = prompt.lower().replace("summarize", "").replace("summary", "").strip()
summary = summarizer.summarize(text)
return {"type": "summary", "summary": summary}
# Check if the user wants to extract topics
elif "topics" in prompt.lower() or "topic" in prompt.lower():
text = prompt.lower().replace("topics", "").replace("topic", "").strip()
topics = topic_extractor.extract_topics([text])
return {"type": "topics", "topics": topics.to_dict()}
# Default to generating a conversational response
else:
response = self.generate_response(prompt)
return {"type": "chat", "response": response}
# Initialize models
classifier = ContentClassifier()
relevance_detector = RelevanceDetector()
summarizer = Summarizer()
search_engine = SearchEngine()
topic_extractor = TopicExtractor()
chatbot = Chatbot()
# Initialize the search engine with a sample dataset
documents = [
"This video explains Instagram growth hacks.",
"Learn how to use hashtags effectively on Instagram.",
"Collaborations are key to growing your Instagram audience."
]
search_engine.build_index(documents)
# Define the schema
features = Features({
"video_id": Value("string"),
"video_link": Value("string"),
"title": Value("string"),
"text": Value("string"),
"channel": Value("string"),
"channel_id": Value("string"),
"date": Value("string"),
"license": Value("string"),
"original_language": Value("string"),
"source_language": Value("string"),
"transcription_language": Value("string"),
"word_count": Value("int64"),
"character_count": Value("int64"),
})
# Load the dataset from Hugging Face Hub
try:
dataset = load_dataset(
"PleIAs/YouTube-Commons",
features=features,
streaming=True,
)
# Process the dataset
for example in dataset["train"]:
print(example) # Process each example
break # Stop after the first example for demonstration
except Exception as e:
print(f"Error loading dataset: {e}")
# Pydantic models for request validation
class TextRequest(BaseModel):
text: str
class QueryRequest(BaseModel):
query: str
class PromptRequest(BaseModel):
prompt: str
# API Endpoints
@app.post("/classify")
async def classify(request: TextRequest):
text = request.text
if not text:
raise HTTPException(status_code=400, detail="No text provided")
result = classifier.classify(text)
return {"result": result}
@app.post("/relevance")
async def relevance(request: TextRequest):
text = request.text
if not text:
raise HTTPException(status_code=400, detail="No text provided")
relevant = relevance_detector.detect_relevance(text)
return {"relevant": relevant}
@app.post("/summarize")
async def summarize(request: TextRequest):
text = request.text
if not text:
raise HTTPException(status_code=400, detail="No text provided")
summary = summarizer.summarize(text)
return {"summary": summary}
@app.post("/search")
async def search(request: QueryRequest):
query = request.query
if not query:
raise HTTPException(status_code=400, detail="No query provided")
try:
results = search_engine.search(query)
return {"results": results}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/topics")
async def topics(request: TextRequest):
text = request.text
if not text:
raise HTTPException(status_code=400, detail="No text provided")
result = topic_extractor.extract_topics([text])
return {"topics": result.to_dict()}
@app.post("/chat")
async def chat(request: PromptRequest):
prompt = request.prompt
if not prompt:
raise HTTPException(status_code=400, detail="No prompt provided")
# Handle the request using the chatbot's handle_request method
result = chatbot.handle_request(prompt)
# Return the appropriate response based on the type of request
if result["type"] == "search":
return {"type": "search", "results": result["results"]}
elif result["type"] == "summary":
return {"type": "summary", "summary": result["summary"]}
elif result["type"] == "topics":
return {"type": "topics", "topics": result["topics"]}
else:
return {"type": "chat", "response": result["response"]}
# Start the FastAPI app
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |