import gradio as gr from transformers import pipeline import spacy from textblob import TextBlob from gradio_client import Client import re # Initialize models nlp = spacy.load("en_core_web_sm") spell_checker = pipeline("text2text-generation", model="oliverguhr/spelling-correction-english-base") def preprocess_capitalization(text: str) -> str: """Preprocess input text to handle capitalization rules.""" words = text.split(" ") processed_words = [] for word in words: # Check if the word is an acronym (all uppercase letters) if re.match(r"^[A-Z]+$", word): processed_words.append(word) # Leave acronyms unchanged # Check if the word has mixed capitalization (e.g., "HEllo") elif re.search(r"[A-Z]", word) and re.search(r"[a-z]", word): processed_words.append(word[0].upper() + word[1:].lower()) # Correct capitalization else: processed_words.append(word) # Leave other words unchanged return " ".join(processed_words) def preprocess_text(text: str): """Process text and return corrections with position information.""" result = { "spell_suggestions": [], "entities": [], "tags": [] } # Apply capitalization preprocessing capitalized_text = preprocess_capitalization(text) if capitalized_text != text: result["spell_suggestions"].append({ "original": text, "corrected": capitalized_text }) text = capitalized_text # Update text for further processing # Find and record positions of corrections doc = nlp(text) # TextBlob spell check with position tracking blob = TextBlob(text) corrected = str(blob.correct()) if corrected != text: result["spell_suggestions"].append({ "original": text, "corrected": corrected }) # Transformer spell check spell_checked = spell_checker(text, max_length=512)[0]['generated_text'] if spell_checked != text and spell_checked != corrected: result["spell_suggestions"].append({ "original": text, "corrected": spell_checked }) # Add entities and tags result["entities"] = [{"text": ent.text, "label": ent.label_} for ent in doc.ents] result["tags"] = [token.text for token in doc if token.text.startswith(('#', '@'))] return text, result def preprocess_and_forward(text: str): """Process text and forward to translation service.""" original_text, preprocessing_result = preprocess_text(text) # Forward original text to translation service client = Client("Frenchizer/space_17") try: translation = client.predict(original_text) return translation, preprocessing_result except Exception as e: return f"Error: {str(e)}", preprocessing_result # Gradio interface with gr.Blocks() as demo: input_text = gr.Textbox(label="Input Text") output_text = gr.Textbox(label="Output Text") preprocess_button = gr.Button("Process") preprocess_button.click(fn=preprocess_and_forward, inputs=[input_text], outputs=[output_text]) if __name__ == "__main__": demo.launch()