FreshP commited on
Commit
4cd8155
·
1 Parent(s): b5a9347

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pandas as pd
4
+
5
+ from huggingface_hub import hf_hub_url, cached_download
6
+ from gensim.models.fasttext import load_facebook_model
7
+
8
+ # download model from huggingface hub
9
+ url = hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
10
+ cached_download(url)
11
+
12
+ # load model via gensim
13
+ model = load_facebook_model(cached_download(url))
14
+
15
+ def process(_input, topn, similar):
16
+
17
+ # convert input to lower, replace whitespaces by underscores
18
+ _input = _input.lower().replace(' ', '_')
19
+ _input = _input.split('\n')
20
+
21
+ # apply model
22
+ if len(_input)>1:
23
+ # compute average seed embedding
24
+ avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
25
+ # find (dis)similarities
26
+ if similar=='Dissimilar':
27
+ nearest_neighbors = model.wv.most_similar(negative=avg_input, topn=topn)
28
+ else:
29
+ nearest_neighbors = model.wv.most_similar(positive=avg_input, topn=topn)
30
+ frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
31
+ else:
32
+ # find (dis)similarities
33
+ if similar=='Dissimilar':
34
+ nearest_neighbors = model.wv.most_similar(negative=_input[0], topn=topn)
35
+ else:
36
+ nearest_neighbors = model.wv.most_similar(positive=_input[0], topn=topn)
37
+ frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
38
+
39
+ result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbors, frequencies)], columns=['Token', 'Cosine Similarity', 'Frequency'])
40
+ return result
41
+
42
+ def save(df):
43
+ df.to_csv('result.csv')
44
+ return 'result.csv'
45
+
46
+ demo = gr.Blocks(theme="dark")
47
+
48
+ with demo:
49
+ gr.Markdown("# Title")
50
+ gr.Markdown("## Subtitle")
51
+ with gr.Row():
52
+ with gr.Column():
53
+ similar_radio = gr.Radio(choices=["Similar", "Dissimilar"])
54
+ n_output = gr.Slider(minimum=5, maximum=50, step=1)
55
+ gr.Markdown(
56
+ """### Example prompts:
57
+ - Example 1
58
+ - Example 2
59
+ """
60
+ )
61
+ with gr.Column():
62
+ with gr.Tabs():
63
+ with gr.TabItem("Single"):
64
+ with gr.Column():
65
+ text_input = gr.Textbox(lines=1)
66
+ df_output = gr.Dataframe(interactive=False)
67
+ with gr.Row():
68
+ compute_button_s = gr.Button("Compute")
69
+ export_button_s = gr.Button("Export as CSV")
70
+ file_out_s = gr.File(interactive=False)
71
+ with gr.TabItem("Multiple"):
72
+ with gr.Column():
73
+ text_input_multiple = gr.Textbox(lines=3)
74
+ df_output_multiple = gr.Dataframe(interactive=False)
75
+ with gr.Row():
76
+ compute_button_m = gr.Button("Compute")
77
+ export_button_m = gr.Button("Export as CSV")
78
+ file_out_m = gr.File(interactive=False)
79
+ with gr.Column():
80
+ gr.Markdown("""
81
+ ### Project Description
82
+ Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.""")
83
+
84
+ compute_button_s.click(process, inputs=[text_input, n_output, similar_radio], outputs=df_output)
85
+ compute_button_m.click(process, inputs=[text_input_multiple, n_output, similar_radio], outputs=df_output_multiple)
86
+
87
+ export_button_s.click(save, inputs=[df_output], outputs=file_out_s)
88
+ export_button_s.click(save, inputs=[df_output_multiple], outputs=file_out_s)
89
+
90
+ demo.launch()