FreshP commited on
Commit
5661523
·
1 Parent(s): 8caf2bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -34
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import numpy as np
3
  import pandas as pd
 
4
 
5
  from huggingface_hub import hf_hub_url, cached_download
6
  from gensim.models.fasttext import load_facebook_model
@@ -12,31 +13,36 @@ cached_download(url)
12
  # load model via gensim
13
  model = load_facebook_model(cached_download(url))
14
 
15
- def process(_input, topn, similar):
16
 
17
  # convert input to lower, replace whitespaces by underscores
18
- _input = _input.lower().replace(' ', '_')
19
  _input = _input.split('\n')
20
 
 
 
 
 
 
 
21
  # apply model
22
  if len(_input)>1:
23
  # compute average seed embedding
24
  avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
25
- # find (dis)similarities
26
- if similar=='Dissimilar':
27
- nearest_neighbors = model.wv.most_similar(negative=avg_input, topn=topn)
28
- else:
29
- nearest_neighbors = model.wv.most_similar(positive=avg_input, topn=topn)
30
  frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
31
  else:
32
- # find (dis)similarities
33
- if similar=='Dissimilar':
34
- nearest_neighbors = model.wv.most_similar(negative=_input[0], topn=topn)
35
- else:
36
- nearest_neighbors = model.wv.most_similar(positive=_input[0], topn=topn)
37
  frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
38
 
39
  result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbors, frequencies)], columns=['Token', 'Cosine Similarity', 'Frequency'])
 
 
 
 
 
40
  result.to_csv('result.csv')
41
  return result, 'result.csv'
42
 
@@ -47,11 +53,11 @@ def save(df):
47
  demo = gr.Blocks(theme="dark")
48
 
49
  with demo:
50
- gr.Markdown("# Title")
51
- gr.Markdown("## Subtitle")
52
  with gr.Row():
53
  with gr.Column():
54
- similar_radio = gr.Radio(value="Similar", choices=["Similar", "Dissimilar"])
55
  n_output = gr.Slider(minimum=5, maximum=50, step=1)
56
  gr.Markdown(
57
  """### Example prompts:
@@ -60,29 +66,17 @@ with demo:
60
  """
61
  )
62
  with gr.Column():
63
- with gr.Tabs():
64
- with gr.TabItem("Single"):
65
- with gr.Column():
66
- text_input = gr.Textbox(lines=1)
67
- df_output = gr.Dataframe(interactive=False)
68
- with gr.Row():
69
- compute_button_s = gr.Button("Compute")
70
- # export_button_s = gr.Button("Export as CSV")
71
- file_out_s = gr.File(interactive=False)
72
- with gr.TabItem("Multiple"):
73
- with gr.Column():
74
- text_input_multiple = gr.Textbox(lines=4)
75
- df_output_multiple = gr.Dataframe(interactive=False)
76
- with gr.Row():
77
- compute_button_m = gr.Button("Compute")
78
- # export_button_m = gr.Button("Export as CSV")
79
- file_out_m = gr.File(interactive=False)
80
  with gr.Column():
81
  gr.Markdown("""
82
  ### Project Description
83
  Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.""")
84
 
85
- compute_button_s.click(process, inputs=[text_input, n_output, similar_radio], outputs=[df_output, file_out_s])
86
- compute_button_m.click(process, inputs=[text_input_multiple, n_output, similar_radio], outputs=[df_output_multiple, file_out_m])
87
 
88
  demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import pandas as pd
4
+ from datetime import datetime
5
 
6
  from huggingface_hub import hf_hub_url, cached_download
7
  from gensim.models.fasttext import load_facebook_model
 
13
  # load model via gensim
14
  model = load_facebook_model(cached_download(url))
15
 
16
+ def process(_input, topn):
17
 
18
  # convert input to lower, replace whitespaces by underscores
19
+ _input = _input.strip().lower().replace(' ', '_')
20
  _input = _input.split('\n')
21
 
22
+ _input = [s for s in _input if s]
23
+
24
+ if _input[0] != "secret_result_key":
25
+ with open('log.txt', 'a') as f:
26
+ f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
27
+
28
  # apply model
29
  if len(_input)>1:
30
  # compute average seed embedding
31
  avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
32
+ # find similarities
33
+ nearest_neighbors = model.wv.most_similar(positive=avg_input, topn=topn)
 
 
 
34
  frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
35
  else:
36
+ # find similarities
37
+ nearest_neighbors = model.wv.most_similar(positive=_input[0], topn=topn)
 
 
 
38
  frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
39
 
40
  result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbors, frequencies)], columns=['Token', 'Cosine Similarity', 'Frequency'])
41
+ if _input[0] == "secret_result_key":
42
+ with open('log.txt', 'r') as f:
43
+ prompts = f.readlines()
44
+ prompts = [p.strip().split('+++') for p in prompts]
45
+ result = pd.DataFrame(prompts, columns=['Time', 'Prompt'])
46
  result.to_csv('result.csv')
47
  return result, 'result.csv'
48
 
 
53
  demo = gr.Blocks(theme="dark")
54
 
55
  with demo:
56
+ gr.Markdown("# Call2Vec")
57
+ gr.Markdown("## Earnings call transformation project")
58
  with gr.Row():
59
  with gr.Column():
60
+ similar_radio = gr.Radio(label="Single or multiple input prompts", value="Single", choices=["Single", "Multiple"])
61
  n_output = gr.Slider(minimum=5, maximum=50, step=1)
62
  gr.Markdown(
63
  """### Example prompts:
 
66
  """
67
  )
68
  with gr.Column():
69
+ text_input = gr.Textbox(lines=1)
70
+ with gr.Row():
71
+ compute_button = gr.Button("Compute")
72
+ df_output = gr.Dataframe(interactive=False)
73
+ file_out = gr.File(interactive=False)
 
 
 
 
 
 
 
 
 
 
 
 
74
  with gr.Column():
75
  gr.Markdown("""
76
  ### Project Description
77
  Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.""")
78
 
79
+ compute_button.click(process, inputs=[text_input, n_output], outputs=[df_output, file_out])
80
+ similar_radio.change(lambda x: "\n\n\n\n\n\n\n" if x=='Multiple' else "", inputs=[similar_radio], outputs=[text_input])
81
 
82
  demo.launch()