File size: 4,272 Bytes
c20f676
929a283
c20f676
 
 
 
93452e4
929a283
 
25ba997
c20f676
 
 
25ba997
d62d124
32c8def
c20f676
 
 
 
 
6dc00a6
929a283
c20f676
 
929a283
 
155ba37
929a283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20f676
 
 
 
 
 
 
929a283
c20f676
 
32c8def
c20f676
 
f67ae72
c20f676
 
 
 
929a283
 
 
 
c20f676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929a283
c20f676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f67ae72
c20f676
 
 
 
 
 
929a283
c20f676
 
 
 
 
 
97c8253
c20f676
97c8253
3d70771
c20f676
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

import gradio as gr
import nltk
from nltk.tokenize import sent_tokenize
from transformers import AutoTokenizer, AutoModel
import torch
import faiss
import numpy as np
import openai

# Set up OpenAI API key
openai.api_key = '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'
# Download NLTK data
nltk.download('punkt')
nltk.download('punkt_tab')

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased")

manual_path="ubuntu_manual.txt"

# Load the Ubuntu manual from a .txt file
with open(manual_path, "r", encoding="utf-8") as file:
    full_text = file.read()

# Function to chunk the text into smaller pieces
def chunk_text(text, chunk_size=500):
    sentences = sent_tokenize(text)
    chunks = []
    current_chunk = []

    for sentence in sentences:
        if len(current_chunk) + len(sentence.split()) <= chunk_size:
            current_chunk.append(sentence)
        else:
            chunks.append(" ".join(current_chunk))
            current_chunk = [sentence]

    if current_chunk:
        chunks.append(" ".join(current_chunk))

    return chunks

# Apply chunking to the entire text
manual_chunks = chunk_text(full_text, chunk_size=500)

# Function to generate embeddings for each chunk
def embed_text(texts):
    inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
    embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy()  # CLS token representation
    return embeddings

# Generate embeddings for the chunks
chunk_embeddings = embed_text(manual_chunks)

# Convert embeddings to a numpy array
chunk_embeddings_np = np.array(chunk_embeddings)

# Create a FAISS index and add the embeddings
dimension = chunk_embeddings_np.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(chunk_embeddings_np)

# Function to retrieve relevant chunks for a user query
def retrieve_chunks(query, k=5):
    query_embedding = embed_text([query])
    distances, indices = index.search(query_embedding, k=k)
    valid_indices = [i for i in indices[0] if i < len(manual_chunks)]
    relevant_chunks = [manual_chunks[i] for i in valid_indices]
    return relevant_chunks

# Function to perform RAG: Retrieve chunks and generate a response using GPT-3.5
def rag_response_gpt3_5(query, k=3, max_tokens=150):
    relevant_chunks = retrieve_chunks(query, k=k)
    if not relevant_chunks:
        return "Sorry, I couldn't find relevant information."

    # Combine the query with a limited number of retrieved chunks
    augmented_input = query + "\n" + "\n".join(relevant_chunks)

    # Tokenize the augmented input and ensure it fits within model token limits
    input_ids = tokenizer(augmented_input, return_tensors="pt").input_ids[0]
    
    if len(input_ids) > 512:
        input_ids = input_ids[:512]
        augmented_input = tokenizer.decode(input_ids, skip_special_tokens=True)

    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": augmented_input}
        ],
        max_tokens=max_tokens,
        temperature=0.7
    )

    return response.choices[0].message['content'].strip()

# Chat history to maintain conversation context
history = []

# Define Gradio interface function with chat history
def chatbot(query, history):
    response = rag_response_gpt3_5(query)
    history.append((query, response))
    
    # Combine all messages into a single string
    chat_history = ""
    for user_input, bot_response in history:
        chat_history += f"User: {user_input}\nBot: {bot_response}\n\n"
    
    return chat_history, history

# Create the Gradio interface
iface = gr.Interface(fn=chatbot, 
                     inputs=["text", "state"], 
                     outputs=["text", "state"], 
                     title="Ubuntu Manual Chatbot",
                     description="Ask me anything about the Ubuntu manual.")

# Launch the app
if __name__ == "__main__":
    iface.launch()