CHATBOT1 / app.py
FridayMaster's picture
Update app.py
f67ae72 verified
raw
history blame
4.03 kB
# OpenAI API key
import gradio as gr
import faiss
import numpy as np
import openai
from sentence_transformers import SentenceTransformer
from nltk.tokenize import sent_tokenize
import nltk
from transformers import AutoTokenizer, AutoModel
import torch
# Download the required NLTK data
nltk.download('punkt')
# Paths to your files
faiss_path = "manual_chunked_faiss_index_500.bin"
manual_path = "ubuntu_manual.txt"
# Load the Ubuntu manual from a .txt file
try:
with open(manual_path, "r", encoding="utf-8") as file:
full_text = file.read()
except FileNotFoundError:
raise FileNotFoundError(f"The file {manual_path} was not found.")
# Function to chunk the text into smaller pieces
def chunk_text(text, chunk_size=500):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
for sentence in sentences:
if len(current_chunk) + len(sentence.split()) <= chunk_size:
current_chunk.append(sentence)
else:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
# Apply chunking to the entire text
manual_chunks = chunk_text(full_text, chunk_size=500)
# Load your FAISS index
try:
index = faiss.read_index(faiss_path)
except Exception as e:
raise RuntimeError(f"Failed to load FAISS index: {e}")
# Load the tokenizer and model for embeddings
embedding_tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
embedding_model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
# Function to create embeddings
def embed_text(text_list):
inputs = embedding_tokenizer(text_list, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = embedding_model(**inputs)
embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() # Use the CLS token representation
return embeddings
# Function to retrieve relevant chunks for a user query
def retrieve_chunks(query, k=5):
query_embedding = embed_text([query])
try:
distances, indices = index.search(query_embedding, k=k)
print("Distances:", distances)
print("Indices:", indices)
except Exception as e:
raise RuntimeError(f"FAISS search failed: {e}")
if len(indices[0]) == 0:
return []
valid_indices = [i for i in indices[0] if i < len(manual_chunks)]
if not valid_indices:
return []
relevant_chunks = [manual_chunks[i] for i in valid_indices]
return relevant_chunks
# Load the tokenizer and model for generation
generator_tokenizer = AutoTokenizer.from_pretrained("gpt-3.5-turbo") # Replace with correct tokenizer if needed
generator_model = AutoModel.from_pretrained("gpt-3.5-turbo") # Replace with correct model if needed
# Function to truncate long inputs
def truncate_input(text, max_length=512):
inputs = generator_tokenizer(text, return_tensors="pt", truncation=True, max_length=max_length)
return inputs
# Function to perform RAG: Retrieve chunks and generate a response
def rag_response(query, k=5, max_new_tokens=150):
try:
relevant_chunks = retrieve_chunks(query, k=k)
if not relevant_chunks:
return "Sorry, I couldn't find relevant information."
augmented_input = query + "\n" + "\n".join(relevant_chunks)
inputs = truncate_input(augmented_input)
# Generate response
outputs = generator_model.generate(inputs['input_ids'], max_new_tokens=max_new_tokens)
generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
except Exception as e:
return f"An error occurred: {e}"
# Gradio Interface
iface = gr.Interface(
fn=rag_response,
inputs="text",
outputs="text",
title="RAG Chatbot with FAISS and GPT-3.5",
description="Ask me anything!"
)
if __name__ == "__main__":
iface.launch()