Spaces:
Sleeping
Sleeping
# OpenAI API key | |
import gradio as gr | |
import faiss | |
import numpy as np | |
import openai | |
from sentence_transformers import SentenceTransformer | |
from nltk.tokenize import sent_tokenize | |
import nltk | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
# Download the required NLTK data | |
nltk.download('punkt') | |
# Paths to your files | |
faiss_path = "manual_chunked_faiss_index_500.bin" | |
manual_path = "ubuntu_manual.txt" | |
# Load the Ubuntu manual from a .txt file | |
try: | |
with open(manual_path, "r", encoding="utf-8") as file: | |
full_text = file.read() | |
except FileNotFoundError: | |
raise FileNotFoundError(f"The file {manual_path} was not found.") | |
# Function to chunk the text into smaller pieces | |
def chunk_text(text, chunk_size=500): | |
sentences = sent_tokenize(text) | |
chunks = [] | |
current_chunk = [] | |
for sentence in sentences: | |
if len(current_chunk) + len(sentence.split()) <= chunk_size: | |
current_chunk.append(sentence) | |
else: | |
chunks.append(" ".join(current_chunk)) | |
current_chunk = [sentence] | |
if current_chunk: | |
chunks.append(" ".join(current_chunk)) | |
return chunks | |
# Apply chunking to the entire text | |
manual_chunks = chunk_text(full_text, chunk_size=500) | |
# Load your FAISS index | |
try: | |
index = faiss.read_index(faiss_path) | |
except Exception as e: | |
raise RuntimeError(f"Failed to load FAISS index: {e}") | |
# Load the tokenizer and model for embeddings | |
embedding_tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased") | |
embedding_model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased") | |
# Function to create embeddings | |
def embed_text(text_list): | |
inputs = embedding_tokenizer(text_list, padding=True, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = embedding_model(**inputs) | |
embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() # Use the CLS token representation | |
return embeddings | |
# Function to retrieve relevant chunks for a user query | |
def retrieve_chunks(query, k=5): | |
query_embedding = embed_text([query]) | |
try: | |
distances, indices = index.search(query_embedding, k=k) | |
print("Distances:", distances) | |
print("Indices:", indices) | |
except Exception as e: | |
raise RuntimeError(f"FAISS search failed: {e}") | |
if len(indices[0]) == 0: | |
return [] | |
valid_indices = [i for i in indices[0] if i < len(manual_chunks)] | |
if not valid_indices: | |
return [] | |
relevant_chunks = [manual_chunks[i] for i in valid_indices] | |
return relevant_chunks | |
# Load the tokenizer and model for generation | |
generator_tokenizer = AutoTokenizer.from_pretrained("gpt-3.5-turbo") # Replace with correct tokenizer if needed | |
generator_model = AutoModel.from_pretrained("gpt-3.5-turbo") # Replace with correct model if needed | |
# Function to truncate long inputs | |
def truncate_input(text, max_length=512): | |
inputs = generator_tokenizer(text, return_tensors="pt", truncation=True, max_length=max_length) | |
return inputs | |
# Function to perform RAG: Retrieve chunks and generate a response | |
def rag_response(query, k=5, max_new_tokens=150): | |
try: | |
relevant_chunks = retrieve_chunks(query, k=k) | |
if not relevant_chunks: | |
return "Sorry, I couldn't find relevant information." | |
augmented_input = query + "\n" + "\n".join(relevant_chunks) | |
inputs = truncate_input(augmented_input) | |
# Generate response | |
outputs = generator_model.generate(inputs['input_ids'], max_new_tokens=max_new_tokens) | |
generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=rag_response, | |
inputs="text", | |
outputs="text", | |
title="RAG Chatbot with FAISS and GPT-3.5", | |
description="Ask me anything!" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |