Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,35 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
|
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
tokenizer =
|
9 |
-
model =
|
10 |
|
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
messages = [{"role": "system", "content": system_message}]
|
18 |
-
|
19 |
-
for user_msg, bot_msg in history:
|
20 |
-
if user_msg:
|
21 |
-
messages.append({"role": "user", "content": user_msg})
|
22 |
-
if bot_msg:
|
23 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
24 |
-
|
25 |
-
messages.append({"role": "user", "content": message})
|
26 |
-
|
27 |
-
# Tokenize and prepare the input
|
28 |
-
prompt = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in messages])
|
29 |
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
|
30 |
-
|
31 |
-
# Generate the response
|
32 |
outputs = model.generate(
|
33 |
inputs['input_ids'],
|
34 |
-
max_length=
|
35 |
num_return_sequences=1,
|
36 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
37 |
temperature=temperature,
|
38 |
top_p=top_p,
|
39 |
-
|
40 |
-
|
41 |
)
|
42 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
|
44 |
-
#
|
45 |
response = response.split("Assistant:")[-1].strip()
|
46 |
response_lines = response.split('\n')
|
47 |
clean_response = []
|
@@ -49,26 +37,28 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
49 |
if "User:" not in line and "Assistant:" not in line:
|
50 |
clean_response.append(line)
|
51 |
response = ' '.join(clean_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
return
|
54 |
|
55 |
-
#
|
56 |
demo = gr.ChatInterface(
|
57 |
-
|
58 |
-
additional_inputs=[
|
59 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
60 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
61 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
62 |
-
gr.Slider(
|
63 |
-
minimum=0.1,
|
64 |
-
maximum=1.0,
|
65 |
-
value=0.95,
|
66 |
-
step=0.05,
|
67 |
-
label="Top-p (nucleus sampling)",
|
68 |
-
),
|
69 |
-
],
|
70 |
-
title="Chatbot",
|
71 |
-
description="Ask anything to the chatbot."
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
|
4 |
+
# Load the custom model and tokenizer
|
5 |
+
model_path = 'redael/model_udc'
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
7 |
+
model = GPT2LMHeadModel.from_pretrained(model_path)
|
8 |
|
9 |
+
# Check if CUDA is available and use GPU if possible, enable FP16 precision
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
model.to(device)
|
12 |
+
if device.type == 'cuda':
|
13 |
+
model = model.half() # Use FP16 precision
|
14 |
|
15 |
+
def generate_response(prompt, model, tokenizer, max_length=100, num_beams=1, temperature=0.7, top_p=0.9, repetition_penalty=2.0):
|
16 |
+
# Prepare the prompt
|
17 |
+
prompt = f"User: {prompt}\nAssistant:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
|
|
|
|
|
19 |
outputs = model.generate(
|
20 |
inputs['input_ids'],
|
21 |
+
max_length=max_length,
|
22 |
num_return_sequences=1,
|
23 |
pad_token_id=tokenizer.eos_token_id,
|
24 |
+
num_beams=num_beams, # Use a lower number of beams
|
25 |
temperature=temperature,
|
26 |
top_p=top_p,
|
27 |
+
repetition_penalty=repetition_penalty, # Increased repetition penalty
|
28 |
+
early_stopping=True
|
29 |
)
|
30 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
+
# Post-processing to clean up the response
|
33 |
response = response.split("Assistant:")[-1].strip()
|
34 |
response_lines = response.split('\n')
|
35 |
clean_response = []
|
|
|
37 |
if "User:" not in line and "Assistant:" not in line:
|
38 |
clean_response.append(line)
|
39 |
response = ' '.join(clean_response)
|
40 |
+
return response.strip()
|
41 |
+
|
42 |
+
def respond(message, history: list[tuple[str, str]]):
|
43 |
+
# Prepare the prompt from the history and the new message
|
44 |
+
system_message = "You are a friendly chatbot."
|
45 |
+
conversation = system_message + "\n"
|
46 |
+
for user_message, assistant_response in history:
|
47 |
+
conversation += f"User: {user_message}\nAssistant: {assistant_response}\n"
|
48 |
+
conversation += f"User: {message}\nAssistant:"
|
49 |
+
|
50 |
+
# Fixed values for generation parameters
|
51 |
+
max_tokens = 100 # Adjusted max tokens
|
52 |
+
temperature = 0.7
|
53 |
+
top_p = 0.9
|
54 |
+
|
55 |
+
response = generate_response(conversation, model, tokenizer, max_length=max_tokens, temperature=temperature, top_p=top_p)
|
56 |
|
57 |
+
return response
|
58 |
|
59 |
+
# Gradio Chat Interface without customizable inputs
|
60 |
demo = gr.ChatInterface(
|
61 |
+
respond
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|