import os import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load your model and tokenizer from Hugging Face model_name = 'redael/model_udc' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Function to generate response def generate_response(message, history, system_message, max_tokens, temperature, top_p): # Prepare the conversation history messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) # Tokenize and prepare the input prompt = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in messages]) inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device) # Generate the response outputs = model.generate( inputs['input_ids'], max_length=max_tokens, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True # Enable sampling ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Clean up the response response = response.split("Assistant:")[-1].strip() response_lines = response.split('\n') clean_response = [] for line in response_lines: if "User:" not in line and "Assistant:" not in line: clean_response.append(line) response = ' '.join(clean_response) return [(message, response)] # Create the Gradio chat interface demo = gr.ChatInterface( fn=generate_response, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title="Chatbot", description="Ask anything to the chatbot." ) if __name__ == "__main__": demo.launch()