File size: 14,491 Bytes
6742988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""JAX Ops for symmetric matrices used by the Shampoo optimizer."""

import functools
from typing import Any, List, Optional, Sequence, Union

import jax
import jax.numpy as jnp
import numpy as np
from flax import struct
from jax import lax


@struct.dataclass
class SlicedSymmetricMatrix:
    """A symmetric matrix represented by lower-triangular block row slices.

    For example, the symmetric matrix M = [[a, b^T], [b, c]] would be represented
    by the block rows a and [b, c].

    The matrix may be batched, in which case each entry of block_rows may have
    dimension greater than 2. The last two dimensions represent the rows and cols.
    """

    block_rows: List[jnp.ndarray]


def product_with_transpose(
    mat1,
    mat2,
    axes,
    precision=lax.Precision.DEFAULT,
):
    """Returns mat1 * mat2^T for two matrices (possibly batched).

    The rows and columns are the last two dimensions for each matrix.

    Args:
      mat1: First matrix.
      mat2: Second matrix.
      axes: The axes over which to apply the product.
      precision: JAX precision to use for the multiplication.
    """
    return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision)


@functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision"))
def sliced_transposed_product(
    mat,
    block_size,
    axes=(-1,),
    precision=lax.Precision.DEFAULT,
):
    """Returns the blocked slices representing a symmetric contraction.

    Specifically, the output is a contraction of the input mat with itself, in the
    specified axes.

    Args:
      mat: The matrix for which we will compute a contraction with itself.
      block_size: The size of row blocks to compute.
      axes: Axes to use for the contraction.
      precision: The precision to use in each computation.

    Raises:
      ValueError: Raised when the specified block size does not evenly divide
        the number of rows of the input mat.
    """
    rank = len(mat.shape)

    def _make_axis_positive(ax):
        assert -rank <= ax < rank
        return ax + rank if ax < 0 else ax

    positive_axes = [_make_axis_positive(ax) for ax in axes]
    assert len(positive_axes) == len(axes)
    remaining_axes = set(range(rank)) - set(positive_axes)
    assert len(remaining_axes) == 1
    remaining_ax = remaining_axes.pop()

    num_rows = mat.shape[remaining_ax]
    if num_rows % block_size != 0:
        raise ValueError(
            "The row dimension must be divisible by block_size. "
            f"Instead got row dimension={num_rows} and block_size={block_size}."
        )

    block_rows = []
    for i in range(num_rows // block_size):
        start_indices = [0] * rank
        start_indices[remaining_ax] = i * block_size

        slice_sizes = list(mat.shape)
        slice_sizes[remaining_ax] = block_size

        slice_sizes_full = list(mat.shape)
        slice_sizes_full[remaining_ax] = (i + 1) * block_size

        block_rows.append(
            product_with_transpose(
                lax.dynamic_slice(
                    mat, start_indices=start_indices, slice_sizes=slice_sizes
                ),
                lax.dynamic_slice(
                    mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full
                ),
                axes=(axes, axes),
                precision=precision,
            )
        )

    return SlicedSymmetricMatrix(block_rows=block_rows)


@functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision"))
def sliced_transposed_product_concat(
    mat,
    block_size,
    axes=(-1,),
    precision=lax.Precision.DEFAULT,
):
    """Returns the concatenated slices representing mat*mat^T.

    Args:
      mat: The matrix for which we will compute mat*mat^T. It does not need to be
        square, and may be batched.
      block_size: The size of row blocks to compute.
      axes: Axes to use for the contraction.
      precision: The precision to use in each computation.

    Raises:
      ValueError: Raised when the specified block size does not evenly divide
        the number of rows of the input mat.
    """
    sliced_symmetric_matrix = sliced_transposed_product(
        mat=mat, block_size=block_size, axes=axes, precision=precision
    )
    return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)


@jax.jit
def materialize_matrix(symmetric_matrix):
    """Returns a materialized symmetric matrix.

    Args:
      symmetric_matrix: the matrix represented by lower-triangular block slices.
    """
    block_rows = symmetric_matrix.block_rows
    block_size = block_rows[0].shape[-2]
    num_blocks = len(block_rows)

    # Slice the lower-triangular and diagonal blocks into blocks.
    blocks = [
        [
            block_row[Ellipsis, i * block_size : (i + 1) * block_size]
            for i in range(k + 1)
        ]
        for k, block_row in enumerate(block_rows)
    ]

    # Generate the (off-diagonal) upper-triangular blocks.
    off_diags = [[] for _ in range(num_blocks - 1)]
    for k, block_row in enumerate(block_rows[1:]):
        for i in range(k + 1):
            off_diags[i].append(
                jnp.swapaxes(
                    a=block_row[Ellipsis, i * block_size : (i + 1) * block_size],
                    axis1=-1,
                    axis2=-2,
                )
            )

    return jnp.block(
        [row + row_t for row, row_t in zip(blocks[:-1], off_diags)] + [blocks[-1]]
    )


@functools.partial(jax.jit, static_argnames=("num_blocks"))
def materialize_matrix_from_concat(
    block_rows_concat,
    num_blocks=None,
):
    """Returns a materialized symmetric matrix from concatenated slices.

    Args:
      block_rows_concat: The matrix represented as the concatenated
        lower-triangular blocks.
      num_blocks: The number of block-rows used to represent the symmetric matrix.
        If not specified, it is inferred from the shape of block_rows_concat.
    """
    if num_blocks is None:
        num_blocks = find_num_blocks(block_rows_concat)

    block_size = block_rows_concat.shape[-2]

    block_rows = [
        block_rows_concat[
            Ellipsis,
            (k * (k + 1))
            // 2
            * block_size : (((k + 1) * (k + 2)) // 2 + 1)
            * block_size,
        ]
        for k in range(num_blocks)
    ]

    return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows))


@functools.partial(jax.jit, static_argnames=("alpha", "beta", "axes"))
def update_sliced_rows(
    symmetric_matrix,
    mat,
    alpha,
    beta,
    axes=(-1,),
):
    """Implements the blocked equivalent of SYRK.

    Specifically, the symmetric matrix (represented using lower-triangular block
    rows) is updated using the sliced product of mat.

    Args:
      symmetric_matrix: The symmetric matrix to update.
      mat: The matrix to use for the update = mat * mat^T. The number of rows
        should match that of symmetric_matrix.
      alpha: The weight for the update.
      beta: The weight for the original symmetric matrix.
      axes: Axes to use for the contraction of the update.

    Returns:
      The updated rows of alpha * mat * mat^T + beta * symmetric_matrix.
    """
    block_size = symmetric_matrix.block_rows[0].shape[-2]
    sym_prod = sliced_transposed_product(mat=mat, block_size=block_size, axes=axes)
    return SlicedSymmetricMatrix(
        block_rows=[
            update * alpha + row * beta
            for update, row in zip(sym_prod.block_rows, symmetric_matrix.block_rows)
        ]
    )


def num_blocks_from_total_blocks(total_blocks):
    """Returns the number of blocks (i.e.

    block rows) from the total blocks.

    This is the inverse of the function x -> x*(x+1)/2.

    For example, the matrix M = [[A, B^T], [B, C]] may be represented using a
    total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2.

    Args:
      total_blocks: The total blocks used to represent the matrix.
    """
    num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32)
    if (num_blocks * (num_blocks + 1)) / 2 != total_blocks:
        raise ValueError(
            f"total_blocks={total_blocks} does not correspond to "
            "a symmetric matrix. It must have the form total_blocks = x*(x+1)/2."
        )
    return num_blocks


def find_num_blocks(block_rows_concat):
    """Returns the number of (row) blocks representing the concatenated matrix.

    For example, an input with dimensions [256, 2560] represents 10 square blocks,
    which matches 4 lower-triangular block rows (1+2+3+4). So this function will
    return 4.

    Use ordinary numpy functions here so that the returned value is static.

    Args:
      block_rows_concat: The concatenated block array.

    Raises:
      ValueError: When the dimensions of the matrix do not correspond to a lower
      triangular block representation.
    """
    # Compute the number of square blocks used to represent the matrix.
    total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
    # Determine the number of block rows by inverting y = x*(x+1)/2.
    return num_blocks_from_total_blocks(total_blocks)


@functools.partial(jax.jit, static_argnames=("block_size"))
def slice_symmetric_matrix(
    mat,
    block_size,
):
    """Returns sliced row blocks.

    Args:
      mat: A symmetric matrix.
      block_size: The size of the row slices.
    """
    num_rows = mat.shape[-2]
    num_cols = mat.shape[-1]
    if num_rows != num_cols:
        raise ValueError("mat is not square.")
    if num_rows % block_size != 0:
        raise ValueError(
            "block size does not evenly divide rows. "
            f"num_rows={num_rows}, block_size={block_size}"
        )
    return SlicedSymmetricMatrix(
        block_rows=[
            mat[
                Ellipsis,
                i * block_size : (i + 1) * block_size,
                0 : (i + 1) * block_size,
            ]
            for i in range(num_rows // block_size)
        ]
    )


@functools.partial(jax.jit, static_argnames=("block_size"))
def slice_symmetric_matrix_concat(
    mat,
    block_size,
):
    """Returns the concatenated sliced row blocks.

    Args:
      mat: A symmetric matrix.
      block_size: The size of the row slices.
    """
    sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size)
    return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)


def sliced_matrix_diag(mat):
    """Returns the diagonal of the symmetric matrix.

    Args:
      mat: The symmetric matrix represented in concatenated block form.
    """
    rows, cols = mat.shape
    total_blocks = cols // rows
    num_blocks = num_blocks_from_total_blocks(total_blocks)
    diags = []
    for i in range(num_blocks):
        last_index = rows * ((i + 2) * (i + 1)) // 2
        first_index = last_index - rows
        diags.append(jnp.diag(mat[Ellipsis, first_index:last_index]))
    return jnp.concatenate(diags, axis=-1)


def diag_as_concat(diag, block_size):
    """Returns the representation of a diagonal matrix in symmetric block form.

    Args:
      diag: The 1D array for the diagonals.
      block_size: The size of blocks to use. Must divide the length of diag.
    """
    assert len(diag.shape) == 1  # diag must be 1D.
    assert len(diag) % block_size == 0
    num_diag_blocks = len(diag) // block_size
    blocks = []
    for i in range(num_diag_blocks):
        blocks.append(jnp.zeros(shape=(block_size, block_size * i), dtype=diag.dtype))
        blocks.append(jnp.diag(diag[i * block_size : (i + 1) * block_size]))
    return jnp.concatenate(blocks, axis=-1)


def row_abs_maxes(mat):
    """Returns the max of the absolute values of the rows of the full matrix.

    For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using
    mat = [1, 6, 2] with block_size = 1. In this case the function returns the
    aboslute row maxes of the original symmetric matrix, [6, 6].

    Args:
      mat: The symmetric matrix represented as the concatenated blocks.
    """
    rows, cols = mat.shape

    # Find col and row max for each block.
    col_maxes = []
    row_maxes = []
    for i in range(cols // rows):
        block = jnp.abs(mat[Ellipsis, i * rows : (i + 1) * rows])
        col_maxes.append(jnp.max(block, axis=1))
        row_maxes.append(jnp.max(block, axis=0))

    # global row max from block maxes.
    num_blocks = num_blocks_from_total_blocks(cols // rows)
    maxes = []
    for i in range(num_blocks):
        maxes.append(
            jnp.concatenate(
                row_maxes[(i * (i + 1) // 2) : ((i + 2) * (i + 1) // 2)]
                + [
                    col_maxes[((j + 1) * (j + 2)) // 2 - (j - i + 1)]
                    for j in range(i + 1, num_blocks)
                ],
                axis=-1,
            )
        )

    return jnp.max(jnp.stack(maxes), axis=0)


def times_vector(mat, vec):
    """Returns the symmetric block-concatenated matrix multiplied by a vector.

    Specifically, each value in the vector is multiplied by a row of the full
    matrix. That is, the vector is broadcast and multiplied element-wise. Note
    this would be the transpose of full_mat * vec if full_mat represented the full
    symmetric matrix.

    Args:
      mat: The symmetric matrix represented as the concatenated blocks.
      vec: The vector, having the same dimension as the materialized matrix.
    """
    rows, cols = mat.shape
    num_blocks = num_blocks_from_total_blocks(cols // rows)
    multiplied = []
    for i in range(num_blocks):
        mat_block = mat[
            Ellipsis, rows * ((i + 1) * i) // 2 : rows * ((i + 1) * (i + 2)) // 2
        ]
        vec_block = vec[Ellipsis, rows * i : rows * (i + 1)]
        multiplied.append(jnp.einsum("...ij,...i->ij", mat_block, vec_block))
    return jnp.concatenate(multiplied, axis=-1)