|
import abc, sys |
|
import gradio as gr |
|
|
|
from gen_table import * |
|
from meta_data import * |
|
|
|
|
|
|
|
|
|
head_style = """ |
|
<style> |
|
@media (min-width: 1536px) |
|
{ |
|
.gradio-container { |
|
min-width: var(--size-full) !important; |
|
} |
|
} |
|
</style> |
|
""" |
|
|
|
with gr.Blocks(title="Frontier AI Cybersecurity Observatory", head= |
|
head_style) as demo: |
|
struct = load_results() |
|
timestamp = struct['time'] |
|
EVAL_TIME = format_timestamp(timestamp) |
|
results = struct['results'] |
|
benchmark_list=list(results.keys()) |
|
|
|
N_DATA = len(benchmark_list) |
|
DATASETS = benchmark_list |
|
|
|
gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_DATA,EVAL_TIME)) |
|
structs = [abc.abstractproperty() for _ in range(N_DATA)] |
|
|
|
with gr.Tabs(elem_id="leaderboard_tabs", elem_classes='tab-buttons') as tabs: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem('π About', elem_id='about', id=1): |
|
with open("about.md", 'r', encoding="utf-8") as file: |
|
gr.Markdown(file.read()) |
|
|
|
for i, benchmark in enumerate(benchmark_list): |
|
with gr.TabItem(f'π {benchmark} Leaderboard', elem_id=benchmark, id=i + 2): |
|
if benchmark in LEADERBOARD_MD: |
|
gr.Markdown(LEADERBOARD_MD[benchmark]) |
|
|
|
s = structs[i] |
|
s.table, s.check_box = BUILD_L2_DF(results, benchmark) |
|
s.type_map = s.check_box['type_map'] |
|
|
|
s.checkbox_group = gr.CheckboxGroup( |
|
choices=s.check_box['all'], |
|
value=s.check_box['required'], |
|
label=f'{benchmark} CheckBoxes', |
|
interactive=True, |
|
) |
|
s.headers = s.check_box['essential'] + s.checkbox_group.value |
|
|
|
if benchmark!='SWE-bench-verified': |
|
with gr.Row(): |
|
s.model_name = gr.Textbox( |
|
value='Input the Model Name (fuzzy, case insensitive)', |
|
label='Model Name', |
|
interactive=True, |
|
visible=True) |
|
else: |
|
with gr.Row(): |
|
s.model_name = gr.Textbox( |
|
value='Input the Agent Name (fuzzy, case insensitive)', |
|
label='Agent Name', |
|
interactive=True, |
|
visible=True) |
|
s.data_component = gr.components.DataFrame( |
|
value=s.table[s.headers], |
|
type='pandas', |
|
datatype=[s.type_map[x] for x in s.headers], |
|
interactive=False, |
|
wrap=True, |
|
visible=True) |
|
s.dataset = gr.Textbox(value=benchmark, label=benchmark, visible=False) |
|
|
|
def filter_df_l2(dataset_name, fields, model_name): |
|
s = structs[benchmark_list.index(dataset_name)] |
|
headers = s.check_box['essential'] + fields |
|
df = cp.deepcopy(s.table) |
|
if dataset_name!="SWE-bench-verified": |
|
default_val = 'Input the Model Name (fuzzy, case insensitive)' |
|
else: |
|
default_val = 'Input the Agent Name (fuzzy, case insensitive)' |
|
|
|
if model_name != default_val: |
|
print(model_name) |
|
model_name = model_name.lower() |
|
if dataset_name!="SWE-bench-verified": |
|
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Model']] |
|
else: |
|
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Agent']] |
|
flag = [model_name in name for name in method_names] |
|
df['TEMP_FLAG'] = flag |
|
df = df[df['TEMP_FLAG'] == True] |
|
df.pop('TEMP_FLAG') |
|
|
|
comp = gr.components.DataFrame( |
|
value=df[headers], |
|
type='pandas', |
|
datatype=[s.type_map[x] for x in headers], |
|
interactive=False, |
|
wrap=True, |
|
visible=True) |
|
return comp |
|
|
|
for cbox in [s.checkbox_group]: |
|
cbox.change( |
|
fn=filter_df_l2, |
|
inputs=[s.dataset, s.checkbox_group, s.model_name], |
|
outputs=s.data_component) |
|
s.model_name.submit( |
|
fn=filter_df_l2, |
|
inputs=[s.dataset, s.checkbox_group, s.model_name], |
|
outputs=s.data_component) |
|
|
|
with gr.Row(): |
|
with gr.Accordion('Citation', open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id='citation-button') |
|
|
|
if __name__ == '__main__': |
|
demo.launch(server_name='0.0.0.0', share=True) |
|
|