Upload website codes
Browse files- app.py +90 -116
- gen_table.py +67 -34
- meta_data.py +51 -17
- results.json +766 -100
app.py
CHANGED
@@ -18,145 +18,112 @@ head_style = """
|
|
18 |
</style>
|
19 |
"""
|
20 |
|
21 |
-
TAB_CSS = """
|
22 |
-
/* 1. Target the real tab‐list container (old & new class names + role attr) */
|
23 |
-
#leaderboard_tabs [role="tablist"],
|
24 |
-
#leaderboard_tabs .gradio-tabs-tablist,
|
25 |
-
#leaderboard_tabs .tab-container[role="tablist"] {
|
26 |
-
display: flex !important;
|
27 |
-
flex-wrap: wrap !important; /* allow multi‑row */
|
28 |
-
white-space: normal !important; /* cancel nowrap */
|
29 |
-
overflow-x: visible!important; /* don’t clip off */
|
30 |
-
height: auto !important; /* grow as tall as needed */
|
31 |
-
max-width: none !important; /* cancel any max‑width */
|
32 |
-
}
|
33 |
-
|
34 |
-
/* 2. Stop each button from flexing */
|
35 |
-
#leaderboard_tabs [role="tab"],
|
36 |
-
#leaderboard_tabs .tab-container[role="tablist"] .tab-button,
|
37 |
-
#leaderboard_tabs .gradio-tabs-tab {
|
38 |
-
flex: none !important;
|
39 |
-
}
|
40 |
-
|
41 |
-
/* 3. Hide every possible “more/overflow” toggle */
|
42 |
-
#leaderboard_tabs .overflow-menu,
|
43 |
-
#leaderboard_tabs [class*="overflow-button"],
|
44 |
-
#leaderboard_tabs button[aria-label*="More"],
|
45 |
-
#leaderboard_tabs .gradio-tabs-overflow,
|
46 |
-
#leaderboard_tabs .gradio-tabs-overflow-button {
|
47 |
-
display: none !important;
|
48 |
-
}
|
49 |
-
"""
|
50 |
-
|
51 |
with gr.Blocks(title="Cybersecurity Leaderboard", head=
|
52 |
head_style) as demo:
|
53 |
struct = load_results()
|
54 |
timestamp = struct['time']
|
55 |
EVAL_TIME = format_timestamp(timestamp)
|
56 |
results = struct['results']
|
57 |
-
|
58 |
-
|
59 |
-
benchmark_list
|
60 |
-
for task in results:
|
61 |
-
task_list+=[task]
|
62 |
-
for benchmark in results[task]:
|
63 |
-
if benchmark!='category':
|
64 |
-
benchmark_list+=[benchmark]
|
65 |
-
model_list+=list(results[task][benchmark].keys())
|
66 |
-
|
67 |
-
model_list=list(set(model_list))
|
68 |
-
N_MODEL=len(model_list)
|
69 |
-
N_TASK=len(task_list)
|
70 |
-
N_DATA = len(list(set(benchmark_list)))
|
71 |
DATASETS = benchmark_list
|
72 |
|
73 |
-
gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_DATA,
|
74 |
-
structs = [abc.abstractproperty() for _ in range(
|
75 |
|
76 |
with gr.Tabs(elem_id="leaderboard_tabs", elem_classes='tab-buttons') as tabs:
|
77 |
-
with gr.TabItem('🏅 Cybersecurity Main Leaderboard', elem_id='main', id=0):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
with gr.TabItem('🔍 About', elem_id='about', id=1):
|
134 |
with open("about.md", 'r', encoding="utf-8") as file:
|
135 |
gr.Markdown(file.read())
|
136 |
|
137 |
-
for i,
|
138 |
-
with gr.TabItem(f'📊 {
|
139 |
-
if
|
140 |
-
gr.Markdown(LEADERBOARD_MD[
|
141 |
|
142 |
s = structs[i]
|
143 |
-
s.table, s.check_box = BUILD_L2_DF(results,
|
144 |
s.type_map = s.check_box['type_map']
|
145 |
|
146 |
s.checkbox_group = gr.CheckboxGroup(
|
147 |
choices=s.check_box['all'],
|
148 |
value=s.check_box['required'],
|
149 |
-
label=f'{
|
150 |
interactive=True,
|
151 |
)
|
152 |
s.headers = s.check_box['essential'] + s.checkbox_group.value
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
s.data_component = gr.components.DataFrame(
|
161 |
value=s.table[s.headers],
|
162 |
type='pandas',
|
@@ -164,17 +131,24 @@ head_style) as demo:
|
|
164 |
interactive=False,
|
165 |
wrap=True,
|
166 |
visible=True)
|
167 |
-
s.dataset = gr.Textbox(value=
|
168 |
|
169 |
def filter_df_l2(dataset_name, fields, model_name):
|
170 |
-
s = structs[
|
171 |
headers = s.check_box['essential'] + fields
|
172 |
df = cp.deepcopy(s.table)
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
if model_name != default_val:
|
175 |
print(model_name)
|
176 |
model_name = model_name.lower()
|
177 |
-
|
|
|
|
|
|
|
178 |
flag = [model_name in name for name in method_names]
|
179 |
df['TEMP_FLAG'] = flag
|
180 |
df = df[df['TEMP_FLAG'] == True]
|
|
|
18 |
</style>
|
19 |
"""
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
with gr.Blocks(title="Cybersecurity Leaderboard", head=
|
22 |
head_style) as demo:
|
23 |
struct = load_results()
|
24 |
timestamp = struct['time']
|
25 |
EVAL_TIME = format_timestamp(timestamp)
|
26 |
results = struct['results']
|
27 |
+
benchmark_list=list(results.keys())
|
28 |
+
|
29 |
+
N_DATA = len(benchmark_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
DATASETS = benchmark_list
|
31 |
|
32 |
+
gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_DATA,EVAL_TIME))
|
33 |
+
structs = [abc.abstractproperty() for _ in range(N_DATA)]
|
34 |
|
35 |
with gr.Tabs(elem_id="leaderboard_tabs", elem_classes='tab-buttons') as tabs:
|
36 |
+
# with gr.TabItem('🏅 Cybersecurity Main Leaderboard', elem_id='main', id=0):
|
37 |
+
# gr.Markdown(LEADERBOARD_MD['MAIN'].format(N_DATA,N_DATA))
|
38 |
+
# _, check_box = BUILD_L1_DF(results, DEFAULT_TASK)
|
39 |
+
# table = generate_table(results, DEFAULT_TASK)
|
40 |
+
|
41 |
+
# type_map = check_box['type_map']
|
42 |
+
|
43 |
+
# checkbox_group = gr.CheckboxGroup(
|
44 |
+
# choices=check_box['all'],
|
45 |
+
# value=check_box['required'],
|
46 |
+
# label='Aspects of Cybersecurity Work',
|
47 |
+
# interactive=True,
|
48 |
+
# )
|
49 |
+
|
50 |
+
# headers = check_box['essential'] + checkbox_group.value
|
51 |
+
# with gr.Row():
|
52 |
+
# model_name = gr.Textbox(
|
53 |
+
# value='Input the Model Name (fuzzy, case insensitive)',
|
54 |
+
# label='Model Name',
|
55 |
+
# interactive=True,
|
56 |
+
# visible=True)
|
57 |
+
# data_component = gr.components.DataFrame(
|
58 |
+
# value=table[headers],
|
59 |
+
# type='pandas',
|
60 |
+
# datatype=[type_map[x] for x in headers],
|
61 |
+
# interactive=False,
|
62 |
+
# wrap=True,
|
63 |
+
# visible=True)
|
64 |
+
|
65 |
+
# def filter_df(fields, model_name):
|
66 |
+
# headers = check_box['essential'] + fields
|
67 |
+
# df = generate_table(results, fields)
|
68 |
|
69 |
+
# default_val = 'Input the Model Name (fuzzy, case insensitive)'
|
70 |
+
# if model_name != default_val:
|
71 |
+
# print(model_name)
|
72 |
+
# model_name = model_name.lower()
|
73 |
+
# method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Model']]
|
74 |
+
# flag = [model_name in name for name in method_names]
|
75 |
+
# df['TEMP_FLAG'] = flag
|
76 |
+
# df = df[df['TEMP_FLAG'] == True]
|
77 |
+
# df.pop('TEMP_FLAG')
|
78 |
+
|
79 |
+
# comp = gr.components.DataFrame(
|
80 |
+
# value=df[headers],
|
81 |
+
# type='pandas',
|
82 |
+
# datatype=[type_map[x] for x in headers],
|
83 |
+
# interactive=False,
|
84 |
+
# wrap=True,
|
85 |
+
# visible=True)
|
86 |
+
# return comp
|
87 |
+
|
88 |
+
# for cbox in [checkbox_group]:
|
89 |
+
# cbox.change(fn=filter_df, inputs=[checkbox_group, model_name], outputs=data_component)
|
90 |
+
# model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name], outputs=data_component)
|
91 |
|
92 |
with gr.TabItem('🔍 About', elem_id='about', id=1):
|
93 |
with open("about.md", 'r', encoding="utf-8") as file:
|
94 |
gr.Markdown(file.read())
|
95 |
|
96 |
+
for i, benchmark in enumerate(benchmark_list):
|
97 |
+
with gr.TabItem(f'📊 {benchmark} Leaderboard', elem_id=benchmark, id=i + 2):
|
98 |
+
if benchmark in LEADERBOARD_MD:
|
99 |
+
gr.Markdown(LEADERBOARD_MD[benchmark])
|
100 |
|
101 |
s = structs[i]
|
102 |
+
s.table, s.check_box = BUILD_L2_DF(results, benchmark)
|
103 |
s.type_map = s.check_box['type_map']
|
104 |
|
105 |
s.checkbox_group = gr.CheckboxGroup(
|
106 |
choices=s.check_box['all'],
|
107 |
value=s.check_box['required'],
|
108 |
+
label=f'{benchmark} CheckBoxes',
|
109 |
interactive=True,
|
110 |
)
|
111 |
s.headers = s.check_box['essential'] + s.checkbox_group.value
|
112 |
|
113 |
+
if benchmark!='SWE-bench-verified':
|
114 |
+
with gr.Row():
|
115 |
+
s.model_name = gr.Textbox(
|
116 |
+
value='Input the Model Name (fuzzy, case insensitive)',
|
117 |
+
label='Model Name',
|
118 |
+
interactive=True,
|
119 |
+
visible=True)
|
120 |
+
else:
|
121 |
+
with gr.Row():
|
122 |
+
s.model_name = gr.Textbox(
|
123 |
+
value='Input the Agent Name (fuzzy, case insensitive)',
|
124 |
+
label='Agent Name',
|
125 |
+
interactive=True,
|
126 |
+
visible=True)
|
127 |
s.data_component = gr.components.DataFrame(
|
128 |
value=s.table[s.headers],
|
129 |
type='pandas',
|
|
|
131 |
interactive=False,
|
132 |
wrap=True,
|
133 |
visible=True)
|
134 |
+
s.dataset = gr.Textbox(value=benchmark, label=benchmark, visible=False)
|
135 |
|
136 |
def filter_df_l2(dataset_name, fields, model_name):
|
137 |
+
s = structs[benchmark_list.index(dataset_name)]
|
138 |
headers = s.check_box['essential'] + fields
|
139 |
df = cp.deepcopy(s.table)
|
140 |
+
if dataset_name!="SWE-bench-verified":
|
141 |
+
default_val = 'Input the Model Name (fuzzy, case insensitive)'
|
142 |
+
else:
|
143 |
+
default_val = 'Input the Agent Name (fuzzy, case insensitive)'
|
144 |
+
|
145 |
if model_name != default_val:
|
146 |
print(model_name)
|
147 |
model_name = model_name.lower()
|
148 |
+
if dataset_name!="SWE-bench-verified":
|
149 |
+
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Model']]
|
150 |
+
else:
|
151 |
+
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Agent']]
|
152 |
flag = [model_name in name for name in method_names]
|
153 |
df['TEMP_FLAG'] = flag
|
154 |
df = df[df['TEMP_FLAG'] == True]
|
gen_table.py
CHANGED
@@ -32,54 +32,87 @@ def format_timestamp(timestamp):
|
|
32 |
date = timestamp[:-4] + '.' + timestamp[-4:-2] + '.' + timestamp[-2:]
|
33 |
return date
|
34 |
|
35 |
-
def BUILD_L1_DF(results, fields):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
|
47 |
|
48 |
-
def BUILD_L2_DF(results,
|
49 |
-
results=results[
|
50 |
model_list=[]
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
if benchmark!='category':
|
55 |
-
benchmark_list+=[benchmark]
|
56 |
-
if benchmark not in ["CRUXEval","AutoPenBench"]:
|
57 |
-
all_fields+=[benchmark]
|
58 |
-
else:
|
59 |
-
all_fields+=[benchmark+' (autonomous)', benchmark+' (assisted)']
|
60 |
-
model_list+=list(results[benchmark].keys())
|
61 |
model_list=list(set(model_list))
|
62 |
|
63 |
res = defaultdict(list)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
for model in model_list:
|
69 |
-
if model in results[
|
70 |
-
res[
|
71 |
else:
|
72 |
-
res[
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
df = pd.DataFrame(res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
required_fields = all_fields
|
80 |
|
81 |
check_box = {}
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
check_box['required'] = required_fields
|
84 |
check_box['all'] = all_fields
|
85 |
type_map = defaultdict(lambda: 'number')
|
|
|
32 |
date = timestamp[:-4] + '.' + timestamp[-4:-2] + '.' + timestamp[-2:]
|
33 |
return date
|
34 |
|
35 |
+
# def BUILD_L1_DF(results, fields):
|
36 |
+
# check_box = {}
|
37 |
+
# check_box['essential'] = ['Model']
|
38 |
+
# # revise there to set default dataset
|
39 |
+
# check_box['required'] = DEFAULT_TASK
|
40 |
+
# check_box['all'] = DEFAULT_TASK
|
41 |
+
# type_map = defaultdict(lambda: 'number')
|
42 |
+
# check_box['type_map'] = type_map
|
43 |
|
44 |
+
# df = generate_table(results, fields)
|
45 |
+
# return df, check_box
|
46 |
|
47 |
|
48 |
+
def BUILD_L2_DF(results, benchmark):
|
49 |
+
results=results[benchmark]
|
50 |
model_list=[]
|
51 |
+
all_fields=list(results.keys())
|
52 |
+
for task in results:
|
53 |
+
model_list+=list(results[task].keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
model_list=list(set(model_list))
|
55 |
|
56 |
res = defaultdict(list)
|
57 |
+
if benchmark not in ["RedCode","NYU CTF Bench","PrimeVul","SWE-bench-verified"]:
|
58 |
+
res['Model']=model_list
|
59 |
+
elif benchmark=="SWE-bench-verified":
|
60 |
+
res['Agent']=model_list
|
61 |
+
elif benchmark == "PrimeVul":
|
62 |
+
used=[]
|
63 |
+
for task in all_fields:
|
64 |
+
for model in results[task]:
|
65 |
+
for extra in results[task][model]:
|
66 |
+
if [model,extra] not in used:
|
67 |
+
res['Model'].append(model)
|
68 |
+
res['Method'].append(extra)
|
69 |
+
used.append([model,extra])
|
70 |
+
else:
|
71 |
+
used=[]
|
72 |
+
for task in all_fields:
|
73 |
+
for model in results[task]:
|
74 |
+
for extra in results[task][model]:
|
75 |
+
if [model,extra] not in used:
|
76 |
+
res['Model'].append(model)
|
77 |
+
res['Agent'].append(extra)
|
78 |
+
used.append([model,extra])
|
79 |
+
|
80 |
+
if benchmark not in ["RedCode","NYU CTF Bench",'PrimeVul']:
|
81 |
+
for task in all_fields:
|
82 |
for model in model_list:
|
83 |
+
if model in results[task]:
|
84 |
+
res[task].append(results[task][model])
|
85 |
else:
|
86 |
+
res[task].append(None)
|
87 |
+
else:
|
88 |
+
for task in all_fields:
|
89 |
+
for model, extra in used:
|
90 |
+
if model in results[task] and extra in results[task][model]:
|
91 |
+
res[task].append(results[task][model][extra])
|
92 |
+
else:
|
93 |
+
res[task].append(None)
|
94 |
|
95 |
df = pd.DataFrame(res)
|
96 |
+
rank_criteria=all_fields[0]
|
97 |
+
valid, missing = df[~pd.isna(df[rank_criteria])], df[pd.isna(df[rank_criteria])]
|
98 |
+
valid = valid.sort_values(rank_criteria)
|
99 |
+
valid = valid.iloc[::-1]
|
100 |
+
if len(all_fields):
|
101 |
+
missing = missing.iloc[::-1]
|
102 |
+
df = pd.concat([valid, missing])
|
103 |
+
|
104 |
required_fields = all_fields
|
105 |
|
106 |
check_box = {}
|
107 |
+
if benchmark=="SWE-bench-verified":
|
108 |
+
check_box['essential'] = ['Agent']
|
109 |
+
elif benchmark=='PrimeVul':
|
110 |
+
check_box['essential'] = ['Model','Method']
|
111 |
+
elif benchmark in ["RedCode","NYU CTF Bench"]:
|
112 |
+
check_box['essential'] = ['Model','Agent']
|
113 |
+
else:
|
114 |
+
check_box['essential'] = ['Model']
|
115 |
+
|
116 |
check_box['required'] = required_fields
|
117 |
check_box['all'] = all_fields
|
118 |
type_map = defaultdict(lambda: 'number')
|
meta_data.py
CHANGED
@@ -11,7 +11,7 @@ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
11 |
# CONSTANTS-TEXT
|
12 |
LEADERBORAD_INTRODUCTION = """# Cybersecurity Leaderboard
|
13 |
### Welcome to the Cybersecurity Leaderboard! This leaderboard is a collection of benchmarks relevant to cybersecurity capabilities.
|
14 |
-
This leaderboard covers {} benchmarks
|
15 |
|
16 |
This leaderboard was last updated: {} """
|
17 |
# CONSTANTS-FIELDS
|
@@ -20,35 +20,69 @@ This leaderboard was last updated: {} """
|
|
20 |
# ]
|
21 |
|
22 |
DEFAULT_TASK = [
|
23 |
-
'Vulnerable
|
24 |
]
|
25 |
-
MMBENCH_FIELDS = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench']
|
26 |
|
27 |
# The README file for each benchmark
|
28 |
LEADERBOARD_MD = {}
|
29 |
|
30 |
-
LEADERBOARD_MD['
|
31 |
-
## Main Evaluation Results
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
- Avg Rank: The average rank on {} Cybersecurity Benchmarks (the lower the better).
|
36 |
-
- Avg Score & Rank are calculated based on selected benchmark. **When results for some selected benchmarks are missing, Avg Score / Rank will be None!!!**
|
37 |
"""
|
|
|
38 |
|
39 |
-
|
|
|
40 |
"""
|
41 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
42 |
"""
|
43 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
44 |
"""
|
45 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
46 |
"""
|
47 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
48 |
"""
|
49 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
50 |
"""
|
51 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
52 |
"""
|
53 |
-
LEADERBOARD_MD['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
"""
|
|
|
11 |
# CONSTANTS-TEXT
|
12 |
LEADERBORAD_INTRODUCTION = """# Cybersecurity Leaderboard
|
13 |
### Welcome to the Cybersecurity Leaderboard! This leaderboard is a collection of benchmarks relevant to cybersecurity capabilities.
|
14 |
+
This leaderboard covers {} benchmarks.
|
15 |
|
16 |
This leaderboard was last updated: {} """
|
17 |
# CONSTANTS-FIELDS
|
|
|
20 |
# ]
|
21 |
|
22 |
DEFAULT_TASK = [
|
23 |
+
'Vulnerable Code Generation', 'Attack Generation', 'CTF', 'Cyber Knowledge', 'Pen Test', 'Vulnerability Detection', 'PoC Generation', 'Patching'
|
24 |
]
|
|
|
25 |
|
26 |
# The README file for each benchmark
|
27 |
LEADERBOARD_MD = {}
|
28 |
|
29 |
+
LEADERBOARD_MD['CyberSecEval-3'] = """CyberSecEval-3 is a security benchmarks for LLMs. CyberSecEval-3 assesses 8 different risks across two broad categories: risk to third parties, and risk to application developers and end users.
|
|
|
30 |
|
31 |
+
Paper: https://arxiv.org/abs/2408.01605
|
32 |
+
Code: https://github.com/meta-llama/PurpleLlama/tree/main/CybersecurityBenchmarks
|
|
|
|
|
33 |
"""
|
34 |
+
LEADERBOARD_MD['SecCodePLT'] = """ SecCodePLT is a unified and comprehensive evaluation platform for code GenAIs' risks. This benchmark consists of insecure coding tasks and cyberattack helpfulness tasks. The helpfulness tasks are designed considering five attack steps: reconnaissance, weaponization & infiltration, C2 & execution, discovery, and collection.
|
35 |
|
36 |
+
Paper: https://arxiv.org/abs/2410.11096
|
37 |
+
Code: https://github.com/CodeSecPLT/CodeSecPLT
|
38 |
"""
|
39 |
+
LEADERBOARD_MD['RedCode'] = """RedCode is a benchmark for risky code execution and generation: (1) RedCode-Exec provides challenging prompts that could lead to risky code execution, aiming to evaluate code agents' ability to recognize and handle unsafe code. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software.
|
40 |
+
|
41 |
+
Paper: https://arxiv.org/abs/2411.07781
|
42 |
+
Code: https://github.com/AI-secure/RedCode
|
43 |
"""
|
44 |
+
LEADERBOARD_MD['CyBench'] = """Cybench is a framework for specifying cybersecurity tasks and evaluating agents on those tasks. This includes 40 professional-level Capture the Flag (CTF) tasks from 4 distinct CTF competitions, chosen to be recent, meaningful, and spanning a wide range of difficulties.
|
45 |
+
|
46 |
+
Paper: https://arxiv.org/abs/2408.08926
|
47 |
+
Code: https://github.com/andyzorigin/cybench
|
48 |
"""
|
49 |
+
LEADERBOARD_MD['NYU CTF Bench'] = """This assesses LLMs in solving CTF challenges. This includes a diverse range of CTF challenges from popular competitions.
|
50 |
+
|
51 |
+
Paper: https://arxiv.org/abs/2406.05590
|
52 |
+
Code: https://github.com/NYU-LLM-CTF/NYU_CTF_Bench
|
53 |
"""
|
54 |
+
LEADERBOARD_MD['CyberBench'] = """CyberBench is a multi-task benchmark to evaluate the model knowledge in cybersecurity.
|
55 |
+
|
56 |
+
Paper: https://zefang-liu.github.io/files/liu2024cyberbench_paper.pdf
|
57 |
+
Code: https://github.com/jpmorganchase/CyberBench
|
58 |
"""
|
59 |
+
LEADERBOARD_MD['CyberMetric'] = """CyberMetric is designed to accurately test the general knowledge of LLMs in cybersecurity. CyberMetric-80, CyberMetric-500, CyberMetric-2000, and CyberMetric-10000 are multiple-choice Q&A benchmark datasets comprising 80, 500, 2000, and 10,000 questions, respectively.
|
60 |
+
|
61 |
+
Paper: https://arxiv.org/abs/2402.07688
|
62 |
+
Code: https://github.com/cybermetric/CyberMetric/tree/main
|
63 |
"""
|
64 |
+
LEADERBOARD_MD['TACTL'] = """Threat Actor Competency Test for LLMs (TACTL) is a multiple-choice benchmark as a challenging offensive cyber knowledge test.
|
65 |
+
|
66 |
+
Paper: https://arxiv.org/abs/2502.15797
|
67 |
+
Code: They plan to open-source TACTL (https://gbhackers.com/mitre-releases-occult-framework/).
|
68 |
"""
|
69 |
+
LEADERBOARD_MD['AutoPenBench'] = """AutoPenBench is an open benchmark for evaluating generative agents in automated penetration testing.
|
70 |
+
|
71 |
+
Paper: https://arxiv.org/abs/2410.03225
|
72 |
+
Code: https://github.com/lucagioacchini/auto-pen-bench
|
73 |
+
"""
|
74 |
+
LEADERBOARD_MD['PrimeVul'] = """PrimeVul is a dataset for training and evaluating code LMs for vulnerability detection.
|
75 |
+
|
76 |
+
Paper: https://arxiv.org/abs/2403.18624
|
77 |
+
Code: https://github.com/DLVulDet/PrimeVul
|
78 |
+
"""
|
79 |
+
LEADERBOARD_MD['CRUXEval'] = """CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation) is a benchmark consisting of 800 Python functions (3-13 lines).
|
80 |
+
|
81 |
+
Paper: https://arxiv.org/abs/2401.03065
|
82 |
+
Code: https://github.com/facebookresearch/cruxeval
|
83 |
+
"""
|
84 |
+
LEADERBOARD_MD['SWE-bench-verified'] = """This is a human-validated subset of SWE-bench that more reliably evaluates AI models' ability to solve real-world software issues.
|
85 |
+
|
86 |
+
Paper: https://openai.com/index/introducing-swe-bench-verified/
|
87 |
+
Code: https://github.com/swe-bench/SWE-bench
|
88 |
"""
|
results.json
CHANGED
@@ -1,135 +1,801 @@
|
|
1 |
{
|
2 |
-
"time": "
|
3 |
"results": {
|
4 |
-
"
|
5 |
-
"
|
6 |
-
|
7 |
-
"
|
8 |
-
"Llama-3
|
9 |
-
"Llama-3
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
15 |
},
|
16 |
-
"
|
17 |
-
"
|
18 |
-
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
},
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
"
|
37 |
-
"
|
38 |
-
"
|
39 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
}
|
41 |
},
|
42 |
-
"
|
43 |
-
"
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"GPT-4o": 12.5,
|
46 |
"GPT-4.5-preview": 17.5,
|
47 |
"o1-preview": 10.0,
|
|
|
48 |
"o3-mini": 22.5,
|
|
|
49 |
"Claude-3.5-Sonnet": 17.5,
|
50 |
"Claude-3.7-Sonnet": 20,
|
51 |
"Gemini-1.5-pro": 7.5,
|
52 |
"Llama-3.1-405B": 7.5,
|
53 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
},
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
}
|
60 |
},
|
61 |
-
"
|
62 |
-
"
|
63 |
-
|
64 |
-
"
|
65 |
-
"GPT-4":
|
66 |
-
"
|
67 |
-
|
68 |
-
|
69 |
-
"
|
70 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"GPT-4o": 91.25,
|
72 |
-
"
|
73 |
-
"
|
74 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
},
|
76 |
-
"
|
77 |
-
"GPT-4o":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
"DeepSeek-R1": 91.8,
|
79 |
"DeepSeek-V3": 86.3,
|
|
|
80 |
"Llama-3.1-405B": 88.5,
|
81 |
-
"
|
|
|
|
|
|
|
82 |
}
|
83 |
},
|
84 |
-
"
|
85 |
-
"
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
"
|
95 |
-
|
96 |
-
"GPT-3.5": 6.21,
|
97 |
-
"GPT-4": 12.94
|
98 |
}
|
99 |
},
|
100 |
-
"
|
101 |
-
"
|
102 |
-
"CRUXEval": {
|
103 |
"GPT-3.5": {
|
104 |
-
"
|
105 |
-
"
|
|
|
106 |
},
|
107 |
"GPT-4": {
|
108 |
-
"
|
109 |
-
"
|
110 |
-
},
|
111 |
-
"Code-Llama-13B": {
|
112 |
-
"autonomous": 39.1,
|
113 |
-
"assisted": 39.3
|
114 |
-
},
|
115 |
-
"Code-Llama-34B": {
|
116 |
-
"autonomous": 50.4,
|
117 |
-
"assisted": 46.0
|
118 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
}
|
120 |
},
|
121 |
-
"
|
122 |
-
"
|
123 |
-
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"
|
128 |
-
"
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
}
|
134 |
}
|
135 |
}
|
|
|
1 |
{
|
2 |
+
"time": "20250422",
|
3 |
"results": {
|
4 |
+
"CyberSecEval-3":{
|
5 |
+
"Social engineering":{
|
6 |
+
"GPT-4-Turbo": 79.6,
|
7 |
+
"Qwen2-72B-Instruct": 70.4,
|
8 |
+
"Llama-3-70B": 59,
|
9 |
+
"Llama-3-405B": 52,
|
10 |
+
"Mixtral-8x22B": 33.6
|
11 |
+
},
|
12 |
+
"Software vulnerability exploitation":{
|
13 |
+
"GPT-4-Turbo": 40,
|
14 |
+
"Gemini Pro 1.0": 29,
|
15 |
+
"Llama-3-70B": 41,
|
16 |
+
"Llama-3-405B": 49,
|
17 |
+
"Mixtral-8x22B": 35
|
18 |
+
},
|
19 |
+
"Prompt injection attack success rates": {
|
20 |
+
"GPT-4-Turbo": 17,
|
21 |
+
"Gemini Pro 1.0": 18,
|
22 |
+
"Llama-3-70B": 26,
|
23 |
+
"Llama-3-405B": 22,
|
24 |
+
"Mixtral-8x22B": 35,
|
25 |
+
"Qwen2-72B-Instruct": 20
|
26 |
+
},
|
27 |
+
"Autocomplete-based insecure code generation": {
|
28 |
+
"GPT-4-Turbo": 30,
|
29 |
+
"Gemini Pro 1.0": 25,
|
30 |
+
"Llama-3-70B": 28,
|
31 |
+
"Llama-3-405B": 31,
|
32 |
+
"Mixtral-8x22B": 25,
|
33 |
+
"Qwen2-72B-Instruct": 30
|
34 |
+
},
|
35 |
+
"Instruction-based insecure code generation": {
|
36 |
+
"GPT-4-Turbo": 35,
|
37 |
+
"Gemini Pro 1.0": 32,
|
38 |
+
"Llama-3-70B": 35,
|
39 |
+
"Llama-3-405B": 39,
|
40 |
+
"Mixtral-8x22B": 34,
|
41 |
+
"Qwen2-72B-Instruct": 34
|
42 |
+
},
|
43 |
+
"Code interpreter abuse compliance rates":{
|
44 |
+
"GPT-4-Turbo": 1,
|
45 |
+
"Gemini Pro 1.0": 11,
|
46 |
+
"Llama-3-70B": 42,
|
47 |
+
"Llama-3-405B": 1,
|
48 |
+
"Mixtral-8x22B": 20,
|
49 |
+
"Qwen2-72B-Instruct": 5
|
50 |
+
},
|
51 |
+
"Cyber attack helpfulness compliance rates": {
|
52 |
+
"GPT-4-Turbo": 42,
|
53 |
+
"Gemini Pro 1.0": 92,
|
54 |
+
"Llama-3-70B": 78,
|
55 |
+
"Llama-3-405B": 38,
|
56 |
+
"Mixtral-8x22B": 80,
|
57 |
+
"Qwen2-72B-Instruct": 47
|
58 |
}
|
59 |
},
|
60 |
+
"SecCodePLT": {
|
61 |
+
"Secure instruction generation failure rates w/o security policy (rule-based metric)": {
|
62 |
+
"CodeLlama-34B-Instruct": 66,
|
63 |
+
"Llama-3.1-70B": 47,
|
64 |
+
"Mixtral-8x22B": 58,
|
65 |
+
"GPT-4o": 44
|
66 |
+
},
|
67 |
+
"Secure instruction generation failure rates w/ security policy (rule-based metric)": {
|
68 |
+
"CodeLlama-34B-Instruct": 41,
|
69 |
+
"Llama-3.1-70B": 17,
|
70 |
+
"Mixtral-8x22B": 30,
|
71 |
+
"GPT-4o": 16
|
72 |
+
},
|
73 |
+
"Secure instruction generation failure rates w/o security policy (Pass@1)": {
|
74 |
+
"CodeLlama-34B-Instruct": 77,
|
75 |
+
"Llama-3.1-70B": 62,
|
76 |
+
"Mixtral-8x22B": 66,
|
77 |
+
"GPT-4o": 47
|
78 |
+
},
|
79 |
+
"Secure instruction generation failure rates w/ security policy (Pass@1)": {
|
80 |
+
"CodeLlama-34B-Instruct": 70,
|
81 |
+
"Llama-3.1-70B": 53,
|
82 |
+
"Mixtral-8x22B": 58,
|
83 |
+
"GPT-4o": 38
|
84 |
+
},
|
85 |
+
"Secure code completion failure rates w/o security policy (rule-based metric)": {
|
86 |
+
"CodeLlama-34B-Instruct": 78,
|
87 |
+
"Llama-3.1-70B": 54,
|
88 |
+
"Mixtral-8x22B": 66,
|
89 |
+
"GPT-4o": 48
|
90 |
+
},
|
91 |
+
"Secure code completion failure rates w/ security policy (rule-based metric)": {
|
92 |
+
"CodeLlama-34B-Instruct": 59,
|
93 |
+
"Llama-3.1-70B": 23,
|
94 |
+
"Mixtral-8x22B": 61,
|
95 |
+
"GPT-4o": 21
|
96 |
+
},
|
97 |
+
"Secure code completion failure rates w/o security policy (Pass@1)": {
|
98 |
+
"CodeLlama-34B-Instruct": 77,
|
99 |
+
"Llama-3.1-70B": 57,
|
100 |
+
"Mixtral-8x22B": 69,
|
101 |
+
"GPT-4o": 44
|
102 |
+
},
|
103 |
+
"Secure code completion failure rates w/ security policy (Pass@1)": {
|
104 |
+
"CodeLlama-34B-Instruct": 75,
|
105 |
+
"Llama-3.1-70B": 45,
|
106 |
+
"Mixtral-8x22B": 56,
|
107 |
+
"GPT-4o": 34
|
108 |
+
},
|
109 |
+
"Reconnaissance": {
|
110 |
+
"GPT-4o": 52,
|
111 |
+
"Claude-3.5-Sonnet": 46,
|
112 |
+
"LLaMA-3.1-70B": 10
|
113 |
+
},
|
114 |
+
"Weaponization & Infiltration": {
|
115 |
+
"GPT-4o": 10,
|
116 |
+
"Claude-3.5-Sonnet": 0,
|
117 |
+
"LLaMA-3.1-70B": 0
|
118 |
+
},
|
119 |
+
"C2 & Execution": {
|
120 |
+
"GPT-4o": 52,
|
121 |
+
"Claude-3.5-Sonnet": 46,
|
122 |
+
"LLaMA-3.1-70B": 10
|
123 |
+
},
|
124 |
+
"Discovery": {
|
125 |
+
"GPT-4o": 82,
|
126 |
+
"Claude-3.5-Sonnet": 88,
|
127 |
+
"LLaMA-3.1-70B": 60
|
128 |
+
},
|
129 |
+
"Collection": {
|
130 |
+
"GPT-4o": 86,
|
131 |
+
"Claude-3.5-Sonnet": 92,
|
132 |
+
"LLaMA-3.1-70B": 28
|
133 |
}
|
134 |
},
|
135 |
+
"RedCode": {
|
136 |
+
"RedCode-Gen (Accuracy)": {
|
137 |
+
"GPT-4o": {
|
138 |
+
"Base LLM": 69.4,
|
139 |
+
"Code Agent": 72.5
|
140 |
+
},
|
141 |
+
"GPT-4": {
|
142 |
+
"Base LLM": 65.0,
|
143 |
+
"Code Agent": 66.9
|
144 |
+
},
|
145 |
+
"GPT-3.5": {
|
146 |
+
"Base LLM": 0.0,
|
147 |
+
"Code Agent": 32.5
|
148 |
+
},
|
149 |
+
"Claude-3-Opus": {
|
150 |
+
"Base LLM": 1.3,
|
151 |
+
"Code Agent": 3.1
|
152 |
+
},
|
153 |
+
"DeepSeekCoder-6.7B": {
|
154 |
+
"Base LLM": 49.4,
|
155 |
+
"Code Agent": 79.4
|
156 |
+
},
|
157 |
+
"CodeLlama-7B": {
|
158 |
+
"Base LLM": 40.0,
|
159 |
+
"Code Agent": 42.0
|
160 |
+
},
|
161 |
+
"CodeLlama-13B": {
|
162 |
+
"Base LLM": 49.4,
|
163 |
+
"Code Agent": 66.3
|
164 |
+
},
|
165 |
+
"Llama-2-7B": {
|
166 |
+
"Base LLM": 16.9,
|
167 |
+
"Code Agent": 20.7
|
168 |
+
},
|
169 |
+
"Mistral-7B": {
|
170 |
+
"Base LLM": 46.3,
|
171 |
+
"Code Agent": 75.3
|
172 |
+
}
|
173 |
+
|
174 |
+
},
|
175 |
+
"RedCode-Exec: Python (Attack success rate)": {
|
176 |
+
"GPT-4o": {
|
177 |
+
"ReAct": 77.23
|
178 |
+
},
|
179 |
+
"GPT-4": {
|
180 |
+
"ReAct": 64.50
|
181 |
+
},
|
182 |
+
"GPT-3.5": {
|
183 |
+
"ReAct": 76.23
|
184 |
+
},
|
185 |
+
"Claude-3.5-Sonnet": {
|
186 |
+
"ReAct": 67.63
|
187 |
+
},
|
188 |
+
"DeepSeekCoder-6.7B": {
|
189 |
+
"ReAct": 80.23,
|
190 |
+
"OCI": 48.87
|
191 |
+
},
|
192 |
+
"DeepSeekCoder-v2-lite": {
|
193 |
+
"ReAct": 79.77
|
194 |
+
},
|
195 |
+
"CodeQwen1.5-7B-Chat": {
|
196 |
+
"ReAct": 77.57
|
197 |
+
},
|
198 |
+
"Llama-3.1-70B-Instruct": {
|
199 |
+
"ReAct": 76.7
|
200 |
+
},
|
201 |
+
"Llama-3.1-8B-Instruct": {
|
202 |
+
"ReAct": 62.87
|
203 |
+
},
|
204 |
+
"Llama-3-8B-Instruct": {
|
205 |
+
"ReAct": 42.50
|
206 |
+
},
|
207 |
+
"CodeLlama-13B": {
|
208 |
+
"CodeAct": 71.87,
|
209 |
+
"ReAct": 60.13,
|
210 |
+
"OCI": 49.07
|
211 |
+
},
|
212 |
+
"CodeLlama-7B": {
|
213 |
+
"CodeAct": 61.83,
|
214 |
+
"ReAct": 58.43,
|
215 |
+
"OCI": 46.80
|
216 |
+
},
|
217 |
+
"Llama-2-7B": {
|
218 |
+
"CodeAct": 69.95
|
219 |
+
},
|
220 |
+
"Mistral-7B": {
|
221 |
+
"CodeAct": 62.60
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"RedCode-Exec: Bash (Attack success rate)": {
|
225 |
+
"GPT-4o": {
|
226 |
+
"ReAct": 72.83
|
227 |
+
},
|
228 |
+
"GPT-4": {
|
229 |
+
"ReAct": 61.96
|
230 |
+
},
|
231 |
+
"GPT-3.5": {
|
232 |
+
"ReAct": 70.38
|
233 |
+
},
|
234 |
+
"Claude-3.5-Sonnet": {
|
235 |
+
"ReAct": 62.67
|
236 |
+
},
|
237 |
+
"DeepSeekCoder-6.7B": {
|
238 |
+
"ReAct": 73.17
|
239 |
+
},
|
240 |
+
"DeepSeekCoder-v2-lite": {
|
241 |
+
"ReAct": 68.42
|
242 |
+
},
|
243 |
+
"CodeQwen1.5-7B-Chat": {
|
244 |
+
"ReAct": 71.92
|
245 |
+
},
|
246 |
+
"Llama-3.1-70B-Instruct": {
|
247 |
+
"ReAct": 74.38
|
248 |
+
},
|
249 |
+
"Llama-3-8B-Instruct": {
|
250 |
+
"ReAct": 62.25
|
251 |
+
},
|
252 |
+
"Llama-3.1-8B-Instruct": {
|
253 |
+
"ReAct": 59.83
|
254 |
+
},
|
255 |
+
"CodeLlama-13B": {
|
256 |
+
"ReAct": 65.25
|
257 |
+
},
|
258 |
+
"CodeLlama-7B": {
|
259 |
+
"ReAct": 56.21
|
260 |
+
}
|
261 |
+
}
|
262 |
+
},
|
263 |
+
"CyBench": {
|
264 |
+
"Unguided % solved":{
|
265 |
"GPT-4o": 12.5,
|
266 |
"GPT-4.5-preview": 17.5,
|
267 |
"o1-preview": 10.0,
|
268 |
+
"o1-mini": 10.0,
|
269 |
"o3-mini": 22.5,
|
270 |
+
"Claude-3-Opus": 10.0,
|
271 |
"Claude-3.5-Sonnet": 17.5,
|
272 |
"Claude-3.7-Sonnet": 20,
|
273 |
"Gemini-1.5-pro": 7.5,
|
274 |
"Llama-3.1-405B": 7.5,
|
275 |
+
"Mixtral-8x22B": 7.5,
|
276 |
+
"Gemini 1.5 Pro": 7.5,
|
277 |
+
"Llama-3-70B": 5.0
|
278 |
+
},
|
279 |
+
"Subtask-guided % solved": {
|
280 |
+
"Claude-3.5-Sonnet": 15.0,
|
281 |
+
"GPT-4o": 17.5,
|
282 |
+
"Claude-3-Opus": 12.5,
|
283 |
+
"o1-preview": 10.0,
|
284 |
+
"Llama-3.1-405B": 15.0,
|
285 |
+
"Mixtral-8x22B": 5.0,
|
286 |
+
"Gemini 1.5 Pro": 5.0,
|
287 |
+
"Llama-3-70B": 7.5
|
288 |
+
},
|
289 |
+
"Subtasks % solved": {
|
290 |
+
"Claude-3.5-Sonnet": 43.9,
|
291 |
+
"GPT-4o": 28.7,
|
292 |
+
"Claude-3-Opus": 36.8,
|
293 |
+
"o1-preview": 46.8,
|
294 |
+
"Llama-3.1-405B": 20.5,
|
295 |
+
"Mixtral-8x22B": 15.2,
|
296 |
+
"Gemini 1.5 Pro": 11.7,
|
297 |
+
"Llama-3-70B": 8.2
|
298 |
+
}
|
299 |
+
},
|
300 |
+
"NYU CTF Bench": {
|
301 |
+
"Pass@1": {
|
302 |
+
"Claude-3.5-Sonnet": {
|
303 |
+
"D-CIPHER": 19.00,
|
304 |
+
"EnIGMA": 13.50
|
305 |
+
},
|
306 |
+
"GPT-4o": {
|
307 |
+
"D-CIPHER": 10.50,
|
308 |
+
"EnIGMA": 9.50
|
309 |
+
},
|
310 |
+
"GPT-4": {
|
311 |
+
"EnIGMA": 7.00
|
312 |
+
}
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"CyberBench": {
|
316 |
+
"Average": {
|
317 |
+
"Falcon-7B": 39.4,
|
318 |
+
"Falcon-7B-Instruct": 37.5,
|
319 |
+
"Vicuna-7B-v1.5": 53.0,
|
320 |
+
"Mistral-7B-v0.1": 58.1,
|
321 |
+
"Mistral-7B-Instruct-v0.1": 55.0,
|
322 |
+
"Zephyr-7B-beta": 57.7,
|
323 |
+
"Llama-2-7B": 50.6,
|
324 |
+
"Llama-2-7B-Chat": 44.6,
|
325 |
+
"Vicuna-13B-v1.5": 57.3,
|
326 |
+
"Llama-2-13B": 54.1,
|
327 |
+
"Llama-2-13B-Chat": 45.0,
|
328 |
+
"GPT-3.5-Turbo": 62.6,
|
329 |
+
"GPT-4": 69.6
|
330 |
+
},
|
331 |
+
"CyNER (F1)": {
|
332 |
+
"Falcon-7B": 24.1,
|
333 |
+
"Falcon-7B-Instruct": 20.4,
|
334 |
+
"Vicuna-7B-v1.5": 25.8,
|
335 |
+
"Mistral-7B-v0.1": 36.7,
|
336 |
+
"Mistral-7B-Instruct-v0.1": 32.3,
|
337 |
+
"Zephyr-7B-beta": 30.0,
|
338 |
+
"Llama-2-7B": 26.3,
|
339 |
+
"Llama-2-7B-Chat": 22.7,
|
340 |
+
"Vicuna-13B-v1.5": 26.2,
|
341 |
+
"Llama-2-13B": 28.6,
|
342 |
+
"Llama-2-13B-Chat": 27.5,
|
343 |
+
"GPT-3.5-Turbo": 33.4,
|
344 |
+
"GPT-4": 55.4
|
345 |
+
},
|
346 |
+
"APTNER (F1)": {
|
347 |
+
"Falcon-7B": 17.7,
|
348 |
+
"Falcon-7B-Instruct": 19.1,
|
349 |
+
"Vicuna-7B-v1.5": 27.5,
|
350 |
+
"Mistral-7B-v0.1": 33.0,
|
351 |
+
"Mistral-7B-Instruct-v0.1": 26.2,
|
352 |
+
"Zephyr-7B-beta": 30.5,
|
353 |
+
"Llama-2-7B": 28.0,
|
354 |
+
"Llama-2-7B-Chat": 25.4,
|
355 |
+
"Vicuna-13B-v1.5": 28.1,
|
356 |
+
"Llama-2-13B": 29.9,
|
357 |
+
"Llama-2-13B-Chat": 28.2,
|
358 |
+
"GPT-3.5-Turbo": 40.9,
|
359 |
+
"GPT-4": 50.0
|
360 |
+
},
|
361 |
+
"CyNews (R-1/2/L)": {
|
362 |
+
"Falcon-7B": "1.0/0.8/1.0",
|
363 |
+
"Falcon-7B-Instruct": "7.2/2.7/6.0",
|
364 |
+
"Vicuna-7B-v1.5": "36.1/15.9/31.2",
|
365 |
+
"Mistral-7B-v0.1": "3.4/1.7/3.0",
|
366 |
+
"Mistral-7B-Instruct-v0.1": "28.7/11.8/24.5",
|
367 |
+
"Zephyr-7B-beta": "32.0/12.8/27.4",
|
368 |
+
"Llama-2-7B": "0.3/0.3/0.3",
|
369 |
+
"Llama-2-7B-Chat": "25.2/9.6/21.6",
|
370 |
+
"Vicuna-13B-v1.5": "35.6/15.6/30.9",
|
371 |
+
"Llama-2-13B": "0.6/0.5/0.6",
|
372 |
+
"Llama-2-13B-Chat": "3.5/1.3/2.9",
|
373 |
+
"GPT-3.5-Turbo": "35.5/15.4/30.3",
|
374 |
+
"GPT-4": "35.9/15.5/31.2"
|
375 |
},
|
376 |
+
"SecMMLU (Accuracy)": {
|
377 |
+
"Falcon-7B": 27.0,
|
378 |
+
"Falcon-7B-Instruct": 25.0,
|
379 |
+
"Vicuna-7B-v1.5": 64.0,
|
380 |
+
"Mistral-7B-v0.1": 76.0,
|
381 |
+
"Mistral-7B-Instruct-v0.1": 72.0,
|
382 |
+
"Zephyr-7B-beta": 74.0,
|
383 |
+
"Llama-2-7B": 63.0,
|
384 |
+
"Llama-2-7B-Chat": 60.0,
|
385 |
+
"Vicuna-13B-v1.5": 66.0,
|
386 |
+
"Llama-2-13B": 67.0,
|
387 |
+
"Llama-2-13B-Chat": 64.0,
|
388 |
+
"GPT-3.5-Turbo": 78.0,
|
389 |
+
"GPT-4": 83.0
|
390 |
+
},
|
391 |
+
"CyQuiz (Accuracy)": {
|
392 |
+
"Falcon-7B": 27.0,
|
393 |
+
"Falcon-7B-Instruct": 21.0,
|
394 |
+
"Vicuna-7B-v1.5": 66.0,
|
395 |
+
"Mistral-7B-v0.1": 77.0,
|
396 |
+
"Mistral-7B-Instruct-v0.1": 69.0,
|
397 |
+
"Zephyr-7B-beta": 75.0,
|
398 |
+
"Llama-2-7B": 62.0,
|
399 |
+
"Llama-2-7B-Chat": 56.0,
|
400 |
+
"Vicuna-13B-v1.5": 74.0,
|
401 |
+
"Llama-2-13B": 67.0,
|
402 |
+
"Llama-2-13B-Chat": 65.0,
|
403 |
+
"GPT-3.5-Turbo": 83.0,
|
404 |
+
"GPT-4": 81.0
|
405 |
+
},
|
406 |
+
"MITRE (Accuracy)": {
|
407 |
+
"Falcon-7B": 34.9,
|
408 |
+
"Falcon-7B-Instruct": 30.4,
|
409 |
+
"Vicuna-7B-v1.5": 43.5,
|
410 |
+
"Mistral-7B-v0.1": 50.2,
|
411 |
+
"Mistral-7B-Instruct-v0.1": 47.3,
|
412 |
+
"Zephyr-7B-beta": 43.5,
|
413 |
+
"Llama-2-7B": 44.6,
|
414 |
+
"Llama-2-7B-Chat": 41.6,
|
415 |
+
"Vicuna-13B-v1.5": 47.3,
|
416 |
+
"Llama-2-13B": 47.5,
|
417 |
+
"Llama-2-13B-Chat": 42.7,
|
418 |
+
"GPT-3.5-Turbo": 54.5,
|
419 |
+
"GPT-4": 64.9
|
420 |
+
},
|
421 |
+
"CVE (Accuracy)": {
|
422 |
+
"Falcon-7B": 54.6,
|
423 |
+
"Falcon-7B-Instruct": 52.9,
|
424 |
+
"Vicuna-7B-v1.5": 60.0,
|
425 |
+
"Mistral-7B-v0.1": 64.6,
|
426 |
+
"Mistral-7B-Instruct-v0.1": 58.7,
|
427 |
+
"Zephyr-7B-beta": 61.9,
|
428 |
+
"Llama-2-7B": 64.7,
|
429 |
+
"Llama-2-7B-Chat": 52.5,
|
430 |
+
"Vicuna-13B-v1.5": 62.3,
|
431 |
+
"Llama-2-13B": 62.1,
|
432 |
+
"Llama-2-13B-Chat": 42.0,
|
433 |
+
"GPT-3.5-Turbo": 58.0,
|
434 |
+
"GPT-4": 63.0
|
435 |
+
},
|
436 |
+
"Web (F1)": {
|
437 |
+
"Falcon-7B": 68.9,
|
438 |
+
"Falcon-7B-Instruct": 59.5,
|
439 |
+
"Vicuna-7B-v1.5": 75.3,
|
440 |
+
"Mistral-7B-v0.1": 91.9,
|
441 |
+
"Mistral-7B-Instruct-v0.1": 87.2,
|
442 |
+
"Zephyr-7B-beta": 85.2,
|
443 |
+
"Llama-2-7B": 79.9,
|
444 |
+
"Llama-2-7B-Chat": 48.4,
|
445 |
+
"Vicuna-13B-v1.5": 82.6,
|
446 |
+
"Llama-2-13B": 89.3,
|
447 |
+
"Llama-2-13B-Chat": 58.8,
|
448 |
+
"GPT-3.5-Turbo": 89.2,
|
449 |
+
"GPT-4": 95.4
|
450 |
+
},
|
451 |
+
"Email (F1)": {
|
452 |
+
"Falcon-7B": 93.3,
|
453 |
+
"Falcon-7B-Instruct": 93.5,
|
454 |
+
"Vicuna-7B-v1.5": 86.4,
|
455 |
+
"Mistral-7B-v0.1": 96.4,
|
456 |
+
"Mistral-7B-Instruct-v0.1": 88.9,
|
457 |
+
"Zephyr-7B-beta": 86.7,
|
458 |
+
"Llama-2-7B": 94.2,
|
459 |
+
"Llama-2-7B-Chat": 79.4,
|
460 |
+
"Vicuna-13B-v1.5": 86.5,
|
461 |
+
"Llama-2-13B": 96.4,
|
462 |
+
"Llama-2-13B-Chat": 70.3,
|
463 |
+
"GPT-3.5-Turbo": 78.9,
|
464 |
+
"GPT-4": 93.9
|
465 |
+
},
|
466 |
+
"HTTP (F1)": {
|
467 |
+
"Falcon-7B": 45.2,
|
468 |
+
"Falcon-7B-Instruct": 48.3,
|
469 |
+
"Vicuna-7B-v1.5": 53.7,
|
470 |
+
"Mistral-7B-v0.1": 52.6,
|
471 |
+
"Mistral-7B-Instruct-v0.1": 47.2,
|
472 |
+
"Zephyr-7B-beta": 66.2,
|
473 |
+
"Llama-2-7B": 42.8,
|
474 |
+
"Llama-2-7B-Chat": 41.0,
|
475 |
+
"Vicuna-13B-v1.5": 72.3,
|
476 |
+
"Llama-2-13B": 52.5,
|
477 |
+
"Llama-2-13B-Chat": 48.5,
|
478 |
+
"GPT-3.5-Turbo": 83.1,
|
479 |
+
"GPT-4": 84.1
|
480 |
}
|
481 |
},
|
482 |
+
"CyberMetric":{
|
483 |
+
"80 Q (Accuracy)": {
|
484 |
+
"GPT-4o": 96.25,
|
485 |
+
"Mixtral-8x7B-Instruct": 92.50,
|
486 |
+
"GPT-4-Turbo": 96.25,
|
487 |
+
"Falcon-180B-Chat": 90.00,
|
488 |
+
"GPT-3.5-Turbo": 90.00,
|
489 |
+
"Gemini Pro 1.0": 90.00,
|
490 |
+
"Mistral-7B-Instruct-v0.2": 78.75,
|
491 |
+
"Gemma-1.1-7B": 82.50,
|
492 |
+
"Llama-3-8B-Instruct": 81.25,
|
493 |
+
"Flan-T5-XXL": 81.94,
|
494 |
+
"Llama 2-70B": 75.00,
|
495 |
+
"Zephyr-7B-beta": 80.94,
|
496 |
+
"Qwen1.5-MoE-A2.7B": 62.50,
|
497 |
+
"Qwen1.5-7B": 73.75,
|
498 |
+
"Qwen-7B": 43.75,
|
499 |
+
"Phi-2": 53.75,
|
500 |
+
"Llama3-ChatQA-1.5-8B": 53.75,
|
501 |
+
"DeciLM-7B": 52.50,
|
502 |
+
"Qwen1.5-4B": 36.25,
|
503 |
+
"Genstruct-7B": 38.75,
|
504 |
+
"Llama-3-8B": 38.75,
|
505 |
+
"Gemma-7B": 42.50,
|
506 |
+
"Dolly V2 12b BF16": 33.75,
|
507 |
+
"Gemma-2B": 25.00,
|
508 |
+
"Phi-3-mini-4k-Instruct": 5.00
|
509 |
+
},
|
510 |
+
"500 Q (Accuracy)": {
|
511 |
+
"GPT-4o": 93.40,
|
512 |
+
"Mixtral-8x7B-Instruct": 91.80,
|
513 |
+
"GPT-4-Turbo": 93.30,
|
514 |
+
"Falcon-180B-Chat": 87.80,
|
515 |
+
"GPT-3.5-Turbo": 87.30,
|
516 |
+
"Gemini Pro 1.0": 85.05,
|
517 |
+
"Mistral-7B-Instruct-v0.2": 78.40,
|
518 |
+
"Gemma-1.1-7B": 75.40,
|
519 |
+
"Llama-3-8B-Instruct": 76.20,
|
520 |
+
"Flan-T5-XXL": 71.10,
|
521 |
+
"Llama 2-70B": 73.40,
|
522 |
+
"Zephyr-7B-beta": 76.40,
|
523 |
+
"Qwen1.5-MoE-A2.7B": 64.60,
|
524 |
+
"Qwen1.5-7B": 60.60,
|
525 |
+
"Qwen-7B": 58.00,
|
526 |
+
"Phi-2": 48.00,
|
527 |
+
"Llama3-ChatQA-1.5-8B": 52.80,
|
528 |
+
"DeciLM-7B": 47.20,
|
529 |
+
"Qwen1.5-4B": 41.20,
|
530 |
+
"Genstruct-7B": 40.60,
|
531 |
+
"Llama-3-8B": 35.80,
|
532 |
+
"Gemma-7B": 37.20,
|
533 |
+
"Dolly V2 12b BF16": 30.00,
|
534 |
+
"Gemma-2B": 23.20,
|
535 |
+
"Phi-3-mini-4k-Instruct": 5.00
|
536 |
+
},
|
537 |
+
"2k Q (Accuracy)": {
|
538 |
"GPT-4o": 91.25,
|
539 |
+
"Mixtral-8x7B-Instruct": 91.10,
|
540 |
+
"GPT-4-Turbo": 91.00,
|
541 |
+
"Falcon-180B-Chat": 87.10,
|
542 |
+
"GPT-3.5-Turbo": 88.10,
|
543 |
+
"Gemini Pro 1.0": 84.00,
|
544 |
+
"Mistral-7B-Instruct-v0.2": 76.40,
|
545 |
+
"Gemma-1.1-7B": 75.75,
|
546 |
+
"Llama-3-8B-Instruct": 73.75,
|
547 |
+
"Flan-T5-XXL": 69.00,
|
548 |
+
"Llama 2-70B": 71.60,
|
549 |
+
"Zephyr-7B-beta": 72.50,
|
550 |
+
"Qwen1.5-MoE-A2.7B": 61.65,
|
551 |
+
"Qwen1.5-7B": 61.35,
|
552 |
+
"Qwen-7B": 55.75,
|
553 |
+
"Phi-2": 52.90,
|
554 |
+
"Llama3-ChatQA-1.5-8B": 49.45,
|
555 |
+
"DeciLM-7B": 50.44,
|
556 |
+
"Qwen1.5-4B": 40.50,
|
557 |
+
"Genstruct-7B": 37.55,
|
558 |
+
"Llama-3-8B": 37.00,
|
559 |
+
"Gemma-7B": 36.00,
|
560 |
+
"Dolly V2 12b BF16": 28.75,
|
561 |
+
"Gemma-2B": 18.20,
|
562 |
+
"Phi-3-mini-4k-Instruct": 4.41
|
563 |
},
|
564 |
+
"10k Q (Accuracy)": {
|
565 |
+
"GPT-4o": 88.89,
|
566 |
+
"Mixtral-8x7B-Instruct": 87.00,
|
567 |
+
"GPT-4-Turbo": 88.50,
|
568 |
+
"Falcon-180B-Chat": 87.00,
|
569 |
+
"GPT-3.5-Turbo": 80.30,
|
570 |
+
"Gemini Pro 1.0": 87.50,
|
571 |
+
"Mistral-7B-Instruct-v0.2": 74.82,
|
572 |
+
"Gemma-1.1-7B": 73.32,
|
573 |
+
"Llama-3-8B-Instruct": 71.25,
|
574 |
+
"Flan-T5-XXL": 67.50,
|
575 |
+
"Llama 2-70B": 66.10,
|
576 |
+
"Zephyr-7B-beta": 65.00,
|
577 |
+
"Qwen1.5-MoE-A2.7B": 60.73,
|
578 |
+
"Qwen1.5-7B": 59.79,
|
579 |
+
"Qwen-7B": 54.09,
|
580 |
+
"Phi-2": 52.13,
|
581 |
+
"Llama3-ChatQA-1.5-8B": 49.64,
|
582 |
+
"DeciLM-7B": 50.75,
|
583 |
+
"Qwen1.5-4B": 40.29,
|
584 |
+
"Genstruct-7B": 36.93,
|
585 |
+
"Llama-3-8B": 36.00,
|
586 |
+
"Gemma-7B": 34.28,
|
587 |
+
"Dolly V2 12b BF16": 27.00,
|
588 |
+
"Gemma-2B": 19.18,
|
589 |
+
"Phi-3-mini-4k-Instruct": 4.80
|
590 |
+
}
|
591 |
+
},
|
592 |
+
"TACTL": {
|
593 |
+
"Ground2Crown": {
|
594 |
+
"DeepSeek-R1": 100,
|
595 |
+
"DeepSeek-V3": 100,
|
596 |
+
"GPT-4o": 93.3,
|
597 |
+
"Llama-3.1-405B": 93.3,
|
598 |
+
"Qwen2.5-72B-Instruct": 93.3,
|
599 |
+
"Llama-3.1-Tulu-3-70B": 83.3,
|
600 |
+
"Llama-3.3-70B": 80.0,
|
601 |
+
"Mixtral-8x22B": 60.0
|
602 |
+
|
603 |
+
},
|
604 |
+
"TACTL-183": {
|
605 |
"DeepSeek-R1": 91.8,
|
606 |
"DeepSeek-V3": 86.3,
|
607 |
+
"GPT-4o": 85.2,
|
608 |
"Llama-3.1-405B": 88.5,
|
609 |
+
"Qwen2.5-72B-Instruct": 84.2,
|
610 |
+
"Llama-3.1-Tulu-3-70B": 81.4,
|
611 |
+
"Llama-3.3-70B": 78.7,
|
612 |
+
"Mixtral-8x22B": 65.0
|
613 |
}
|
614 |
},
|
615 |
+
"AutoPenBench": {
|
616 |
+
"Autonomous (Success rate)": {
|
617 |
+
"GPT-4o": 21
|
618 |
+
},
|
619 |
+
"Autonomous (Progress rate)": {
|
620 |
+
"GPT-4o": 39
|
621 |
+
},
|
622 |
+
"Assisted (Success rate)": {
|
623 |
+
"GPT-4o": 64
|
624 |
+
},
|
625 |
+
"Assisted (Progress rate)": {
|
626 |
+
"GPT-4o": 53
|
|
|
|
|
627 |
}
|
628 |
},
|
629 |
+
"PrimeVul": {
|
630 |
+
"Pair-wise Correct Prediction": {
|
|
|
631 |
"GPT-3.5": {
|
632 |
+
"Two-shot": 5.67,
|
633 |
+
"CoT": 6.21,
|
634 |
+
"Fine-tune": 1.24
|
635 |
},
|
636 |
"GPT-4": {
|
637 |
+
"Two-shot": 5.14,
|
638 |
+
"CoT": 12.94
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
}
|
640 |
+
}
|
641 |
+
},
|
642 |
+
"CRUXEval": {
|
643 |
+
"Input Prediction (Pass@1)": {
|
644 |
+
"CodeLlama-7B": 36.6,
|
645 |
+
"CodeLlama-13B": 39.0,
|
646 |
+
"CodeLlama-34B": 46.5,
|
647 |
+
"CodeLlama-7B-Python": 36.3,
|
648 |
+
"CodeLlama-13B-Python": 40.5,
|
649 |
+
"CodeLlama-34B-Python": 41.5,
|
650 |
+
"StarCoderBase-7B": 30.0,
|
651 |
+
"StarCoderBase-15.5B": 31.6,
|
652 |
+
"WizardCoder-13B": 39.2,
|
653 |
+
"WizardCoder-34B": 42.8,
|
654 |
+
"Phi-1": 13.9,
|
655 |
+
"Phi-1.5": 24.1,
|
656 |
+
"Phind v2": 47.9,
|
657 |
+
"DeepSeek-Coder-6.7B-Base": 41.1,
|
658 |
+
"DeepSeek-Coder-33B-Base": 46.6,
|
659 |
+
"DeepSeek-Coder-6.7B-Instruct": 36.6,
|
660 |
+
"DeepSeek-Coder-33B-Instruct": 47.4,
|
661 |
+
"Mistral-7B": 36.0,
|
662 |
+
"GPT-3.5": 49.2,
|
663 |
+
"GPT-4": 67.1
|
664 |
+
},
|
665 |
+
"Input Prediction (Pass@5)": {
|
666 |
+
"CodeLlama-7B": 55.2,
|
667 |
+
"CodeLlama-13B": 58.2,
|
668 |
+
"CodeLlama-34B": 64.7,
|
669 |
+
"CodeLlama-7B-Python": 56.0,
|
670 |
+
"CodeLlama-13B-Python": 58.0,
|
671 |
+
"CodeLlama-34B-Python": 59.2,
|
672 |
+
"StarCoderBase-7B": 48.9,
|
673 |
+
"StarCoderBase-15.5B": 49.5,
|
674 |
+
"WizardCoder-13B": 54.8,
|
675 |
+
"WizardCoder-34B": 57.3,
|
676 |
+
"Phi-1": 22.6,
|
677 |
+
"Phi-1.5": 38.9,
|
678 |
+
"Phind v2": 64.9,
|
679 |
+
"DeepSeek-Coder-6.7B-Base": 61.7,
|
680 |
+
"DeepSeek-Coder-33B-Base": 65.1,
|
681 |
+
"DeepSeek-Coder-6.7B-Instruct": 54.4,
|
682 |
+
"DeepSeek-Coder-33B-Instruct": 64.2,
|
683 |
+
"Mistral-7B": 54.2,
|
684 |
+
"GPT-3.5": 66.5,
|
685 |
+
"GPT-4": 76.8
|
686 |
+
},
|
687 |
+
"Output Prediction (Pass@1)": {
|
688 |
+
"CodeLlama-7B": 36.4,
|
689 |
+
"CodeLlama-13B": 38.4,
|
690 |
+
"CodeLlama-34B": 41.1,
|
691 |
+
"CodeLlama-7B-Python": 36.4,
|
692 |
+
"CodeLlama-13B-Python": 37.8,
|
693 |
+
"CodeLlama-34B-Python": 40.7,
|
694 |
+
"StarCoderBase-7B": 31.1,
|
695 |
+
"StarCoderBase-15.5B": 33.3,
|
696 |
+
"WizardCoder-13B": 37.9,
|
697 |
+
"WizardCoder-34B": 41.2,
|
698 |
+
"Phi-1": 23.3,
|
699 |
+
"Phi-1.5": 27.1,
|
700 |
+
"Phind v2": 38.3,
|
701 |
+
"DeepSeek-Coder-6.7B-Base": 39.8,
|
702 |
+
"DeepSeek-Coder-33B-Base": 43.6,
|
703 |
+
"DeepSeek-Coder-6.7B-Instruct": 41.0,
|
704 |
+
"DeepSeek-Coder-33B-Instruct": 44.0,
|
705 |
+
"Mistral-7B": 31.7,
|
706 |
+
"GPT-3.5": 50.0,
|
707 |
+
"GPT-4": 63.4
|
708 |
+
},
|
709 |
+
"Output Prediction (Pass@5)": {
|
710 |
+
"CodeLlama-7B": 49.6,
|
711 |
+
"CodeLlama-13B": 53.2,
|
712 |
+
"CodeLlama-34B": 56.1,
|
713 |
+
"CodeLlama-7B-Python": 49.7,
|
714 |
+
"CodeLlama-13B-Python": 50.8,
|
715 |
+
"CodeLlama-34B-Python": 53.7,
|
716 |
+
"StarCoderBase-7B": 43.8,
|
717 |
+
"StarCoderBase-15.5B": 47.7,
|
718 |
+
"WizardCoder-13B": 51.6,
|
719 |
+
"WizardCoder-34B": 52.2,
|
720 |
+
"Phi-1": 34.0,
|
721 |
+
"Phi-1.5": 39.4,
|
722 |
+
"Phind v2": 49.2,
|
723 |
+
"DeepSeek-Coder-6.7B-Base": 53.9,
|
724 |
+
"DeepSeek-Coder-33B-Base": 57.5,
|
725 |
+
"DeepSeek-Coder-6.7B-Instruct": 52.5,
|
726 |
+
"DeepSeek-Coder-33B-Instruct": 58.0,
|
727 |
+
"Mistral-7B": 48.2,
|
728 |
+
"GPT-3.5": 60.1,
|
729 |
+
"GPT-4": 68.7
|
730 |
}
|
731 |
},
|
732 |
+
"SWE-bench-verified": {
|
733 |
+
"% Resolved": {
|
734 |
+
"Claude 3.7 Sonnet (No extended thinking + scaffolding)": 70.30,
|
735 |
+
"Augment Agent v0": 65.40,
|
736 |
+
"W&B Programmer O1 crosscheck5": 64.60,
|
737 |
+
"AgentScope": 63.40,
|
738 |
+
"Tools + Claude 3.7 Sonnet (2025-02-24)": 63.20,
|
739 |
+
"EPAM AI/Run Developer Agent v20250219 + Anthopic Claude 3.5 Sonnet": 62.80,
|
740 |
+
"CodeStory Midwit Agent + swe-search": 62.20,
|
741 |
+
"OpenHands + 4x Scaled (2024-02-03)": 60.80,
|
742 |
+
"Learn-by-interact": 60.20,
|
743 |
+
"devlo": 58.20,
|
744 |
+
"Emergent E1 (v2024-12-23)": 57.20,
|
745 |
+
"Gru(2024-12-08)": 57.00,
|
746 |
+
"EPAM AI/Run Developer Agent v20241212 + Anthopic Claude 3.5 Sonnet": 55.40,
|
747 |
+
"Amazon Q Developer Agent (v20241202-dev)": 55.00,
|
748 |
+
"Bracket.sh": 53.20,
|
749 |
+
"OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022)": 53.00,
|
750 |
+
"Google Jules + Gemini 2.0 Flash (v20241212-experimental)": 52.20,
|
751 |
+
"Engine Labs (2024-11-25)": 51.80,
|
752 |
+
"AutoCodeRover-v2.1 (Claude-3.5-Sonnet-20241022)": 51.60,
|
753 |
+
"Agentless-1.5 + Claude-3.5 Sonnet (20241022)": 50.80,
|
754 |
+
"Solver (2024-10-28)": 50.00,
|
755 |
+
"Bytedance MarsCode Agent": 50.00,
|
756 |
+
"nFactorial (2024-11-05)": 49.20,
|
757 |
+
"Tools + Claude 3.5 Sonnet (2024-10-22)": 49.00,
|
758 |
+
"Composio SWE-Kit (2024-10-25)": 48.60,
|
759 |
+
"AppMap Navie v2": 47.20,
|
760 |
+
"Emergent E1 (v2024-10-12)": 46.60,
|
761 |
+
"AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022)": 46.20,
|
762 |
+
"Solver (2024-09-12)": 45.40,
|
763 |
+
"Gru(2024-08-24)": 45.20,
|
764 |
+
"CodeShellAgent + Gemini 2.0 Flash (Experimental)": 44.20,
|
765 |
+
"Agentless Lite + O3 Mini (20250214)": 42.40,
|
766 |
+
"ugaiforge": 41.60,
|
767 |
+
"nFactorial (2024-10-30)": 41.60,
|
768 |
+
"SWE-RL (Llama3-SWE-RL-70B + Agentless Mini) (20250226)": 41.20,
|
769 |
+
"Nebius AI Qwen 2.5 72B Generator + LLama 3.1 70B Critic": 40.60,
|
770 |
+
"Tools + Claude 3.5 Haiku": 40.60,
|
771 |
+
"Honeycomb": 40.60,
|
772 |
+
"Composio SWEkit + Claude 3.5 Sonnet (2024-10-16)": 40.60,
|
773 |
+
"EPAM AI/Run Developer Agent v20241029 + Anthopic Claude 3.5 Sonnet": 39.60,
|
774 |
+
"Amazon Q Developer Agent (v20240719-dev)": 38.80,
|
775 |
+
"Agentless-1.5 + GPT 4o (2024-05-13)": 38.80,
|
776 |
+
"AutoCodeRover (v20240620) + GPT 4o (2024-05-13)": 38.40,
|
777 |
+
"SWE-agent + Claude 3.5 Sonnet": 33.60,
|
778 |
+
"MASAI + GPT 4o (2024-06-12)": 32.60,
|
779 |
+
"Artemis Agent v1 (2024-11-20)": 32.00,
|
780 |
+
"nFactorial (2024-10-07)": 31.60,
|
781 |
+
"SWE-Fixer (Qwen2.5-7b retriever + Qwen2.5-72b editor) 20241128": 30.20,
|
782 |
+
"Lingma Agent + Lingma SWE-GPT 72b (v0925)": 28.80,
|
783 |
+
"EPAM AI/Run Developer Agent + GPT4o": 27.00,
|
784 |
+
"AppMap Navie + GPT 4o (2024-05-13)": 26.20,
|
785 |
+
"nFactorial (2024-10-01)": 25.80,
|
786 |
+
"Amazon Q Developer Agent (v20240430-dev)": 25.60,
|
787 |
+
"Lingma Agent + Lingma SWE-GPT 72b (v0918)": 25.00,
|
788 |
+
"SWE-agent + GPT 4o (2024-05-13)": 23.20,
|
789 |
+
"SWE-agent + GPT 4 (1106)": 22.40,
|
790 |
+
"SWE-agent + Claude 3 Opus": 18.20,
|
791 |
+
"Lingma Agent + Lingma SWE-GPT 7b (v0925)": 18.20,
|
792 |
+
"Lingma Agent + Lingma SWE-GPT 7b (v0918)": 10.20,
|
793 |
+
"RAG + Claude 3 Opus": 7.00,
|
794 |
+
"RAG + Claude 2": 4.40,
|
795 |
+
"RAG + GPT 4 (1106)": 2.80,
|
796 |
+
"RAG + SWE-Llama 7B": 1.40,
|
797 |
+
"RAG + SWE-Llama 13B": 1.20,
|
798 |
+
"RAG + ChatGPT 3.5": 0.40
|
799 |
}
|
800 |
}
|
801 |
}
|