File size: 10,753 Bytes
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
fb96ff6
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692682d
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
fb96ff6
81ecb2b
 
 
 
 
 
 
 
02e04ed
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692682d
81ecb2b
 
 
 
 
 
692682d
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93bf50d
 
 
81ecb2b
93bf50d
 
 
 
81ecb2b
 
ef4bc82
81ecb2b
 
 
 
80596aa
93bf50d
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb96ff6
81ecb2b
fb96ff6
81ecb2b
fb96ff6
81ecb2b
 
93bf50d
81ecb2b
 
93bf50d
 
 
 
 
 
81ecb2b
fb96ff6
 
 
 
 
 
 
 
93bf50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ecb2b
 
 
 
 
 
 
 
93bf50d
81ecb2b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import imageio
import numpy as np

os.system("bash install.sh")

from omegaconf import OmegaConf
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import rembg
import gradio as gr
from gradio_litmodel3d import LitModel3D
from dva.io import load_from_config
from dva.ray_marcher import RayMarcher
from dva.visualize import visualize_primvolume, visualize_video_primvolume
from inference import remove_background, resize_foreground, extract_texmesh
from models.diffusion import create_diffusion
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_sview_dit_fp16.pt")
vae_ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_vae_fp16.pt")

GRADIO_PRIM_VIDEO_PATH = 'prim.mp4'
GRADIO_RGB_VIDEO_PATH = 'rgb.mp4'
GRADIO_MAT_VIDEO_PATH = 'mat.mp4'
GRADIO_GLB_PATH = 'pbr_mesh.glb'
CONFIG_PATH = "./configs/inference_dit.yml"

config = OmegaConf.load(CONFIG_PATH)
config.checkpoint_path = ckpt_path
config.model.vae_checkpoint_path = vae_ckpt_path
# model
model = load_from_config(config.model.generator)
state_dict = torch.load(config.checkpoint_path, map_location='cpu')
model.load_state_dict(state_dict['ema'])
vae = load_from_config(config.model.vae)
vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu')
vae.load_state_dict(vae_state_dict['model_state_dict'])
conditioner = load_from_config(config.model.conditioner)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vae = vae.to(device)
conditioner = conditioner.to(device)
model = model.to(device)
model.eval()

amp = True
precision_dtype = torch.float16

rm = RayMarcher(
    config.image_height,
    config.image_width,
    **config.rm,
).to(device)

perchannel_norm = False
if "latent_mean" in config.model:
    latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device)
    latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device)
    assert latent_mean.shape[-1] == config.model.generator.in_channels
    perchannel_norm = True
latent_nf = config.model.latent_nf

config.diffusion.pop("timestep_respacing")
config.model.pop("vae")
config.model.pop("vae_checkpoint_path")
config.model.pop("conditioner")
config.model.pop("generator")
config.model.pop("latent_nf")
config.model.pop("latent_mean")
config.model.pop("latent_std")
model_primx = load_from_config(config.model)
# load rembg
rembg_session = rembg.new_session()

# process function
def process(input_image, input_num_steps, input_seed=42, input_cfg=6.0):
    # seed
    torch.manual_seed(input_seed)

    os.makedirs(config.output_dir, exist_ok=True)
    output_rgb_video_path = os.path.join(config.output_dir, GRADIO_RGB_VIDEO_PATH)
    output_prim_video_path = os.path.join(config.output_dir, GRADIO_PRIM_VIDEO_PATH)
    output_mat_video_path = os.path.join(config.output_dir, GRADIO_MAT_VIDEO_PATH)

    respacing = "ddim{}".format(input_num_steps)
    diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion)
    sample_fn = diffusion.ddim_sample_loop_progressive
    fwd_fn = model.forward_with_cfg

    # text-conditioned
    if input_image is None:
        raise NotImplementedError
    # image-conditioned (may also input text, but no text usually works too)
    else:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)
        raw_image = np.array(input_image)
        mask = (raw_image[..., -1][..., None] > 0) * 1
        raw_image = raw_image[..., :3] * mask
        input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device)
    
    with torch.no_grad():
        latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4)
        batch = {}
        inf_bs = 1
        inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device)
        y = conditioner.encoder(input_cond)
        model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp)
        if input_cfg >= 0:
            model_kwargs['cfg_scale'] = input_cfg
        for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device):
            final_samples = samples
        recon_param = final_samples["sample"].reshape(inf_bs, config.model.num_prims, -1)
        if perchannel_norm:
            recon_param = recon_param / latent_nf * latent_std + latent_mean
        recon_srt_param = recon_param[:, :, 0:4]
        recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64]
        recon_feat_param_list = []
        # one-by-one to avoid oom
        for inf_bidx in range(inf_bs):
            if not perchannel_norm:
                decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / latent_nf)
            else:
                decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]))
            recon_feat_param_list.append(decoded.detach())
        recon_feat_param = torch.concat(recon_feat_param_list, dim=0)
        # invert normalization
        if not perchannel_norm:
            recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05
        recon_feat_param[:, 0:1, ...] /= 5.
        recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2.
        recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1)
        recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1)
        visualize_video_primvolume(config.output_dir, batch, recon_param, 60, rm, device)
        prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
        torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(config.output_dir))

    return output_rgb_video_path, output_prim_video_path, output_mat_video_path, gr.update(interactive=True)

def export_mesh(remesh=False, decimate=100000, mc_resolution=256):
    # exporting GLB mesh
    output_glb_path = os.path.join(config.output_dir, GRADIO_GLB_PATH)
    config.inference.remesh = remesh
    config.inference.decimate = decimate
    config.inference.mc_resolution = mc_resolution
    denoise_param_path = os.path.join(config.output_dir, 'denoised.pt')
    primx_ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
    model_primx.load_state_dict(primx_ckpt_weight)
    model_primx.to(device)
    model_primx.eval()
    with torch.no_grad():
        model_primx.srt_param[:, 1:4] *= 0.85
        extract_texmesh(config.inference, model_primx, config.output_dir, device)
    return output_glb_path, gr.update(visible=True)

# gradio UI
_TITLE = '''3DTopia-XL'''

_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://frozenburning.github.io/projects/3DTopia-XL/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/3DTopia-XL"><img src='https://img.shields.io/github/stars/3DTopia/3DTopia-XL?style=social'/></a>
</div>

* Now we offer 1) single image conditioned model, we will release 2) multiview images conditioned model and 3) pure text conditioned model in the future!
* If you find the output unsatisfying, try using different seeds!
'''

block = gr.Blocks(title=_TITLE).queue()
with block:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown('# ' + _TITLE)
    gr.Markdown(_DESCRIPTION)
    
    with gr.Row(variant='panel'):
        with gr.Column(scale=1):
            # input image
            input_image = gr.Image(label="image", type='pil')
            # inference steps
            input_num_steps = gr.Radio(choices=[25, 50, 100], label="DDIM steps")
            # random seed
            input_cfg = gr.Slider(label="CFG scale", minimum=0, maximum=15, step=0.5, value=6)
            # random seed
            input_seed = gr.Slider(label="random seed", minimum=0, maximum=10000, step=1, value=42)
            # gen button
            button_gen = gr.Button("Generate")
            export_glb_btn = gr.Button(value="Export GLB", interactive=False)

        with gr.Column(scale=1):
            with gr.Row():
                # final video results
                output_rgb_video = gr.Video(label="RGB")
                output_prim_video = gr.Video(label="Primitives")
                output_mat_video = gr.Video(label="Material")
            with gr.Row():
                # glb file
                output_glb = LitModel3D(
                    label="3D GLB Model",
                    visible=True,
                    clear_color=[0.0, 0.0, 0.0, 0.0],
                    tonemapping="aces",
                    contrast=1.0,
                    scale=1.0,
                )
            with gr.Column(visible=False, scale=1.0) as hdr_row:
                gr.Markdown("""## HDR Environment Map
                
                Select / Upload an HDR environment map to light the 3D model.
                """)
                with gr.Row():
                    hdr_illumination_file = gr.File(
                        label="HDR Envmap", file_types=[".hdr"], file_count="single"
                    )
                    example_hdris = [
                        os.path.join("assets/hdri", f)
                        for f in os.listdir("assets/hdri")
                    ]
                    hdr_illumination_example = gr.Examples(
                        examples=example_hdris,
                        inputs=hdr_illumination_file,
                    )

                    hdr_illumination_file.change(
                        lambda x: gr.update(env_map=x.name if x is not None else None),
                        inputs=hdr_illumination_file,
                        outputs=[output_glb],
                    )

        button_gen.click(process, inputs=[input_image, input_num_steps, input_seed, input_cfg], outputs=[output_rgb_video, output_prim_video, output_mat_video, export_glb_btn])
        
        export_glb_btn.click(export_mesh, inputs=[], outputs=[output_glb, hdr_row])
    
    gr.Examples(
        examples=[
            "assets/examples/fruit_elephant.jpg",
            "assets/examples/mei_ling_panda.png",
            "assets/examples/shuai_panda_notail.png",
        ],
        inputs=[input_image],
        outputs=[output_rgb_video, output_prim_video, output_mat_video, export_glb_btn],
        fn=lambda x: process(input_image=x),
        cache_examples=False,
        label='Single Image to 3D PBR Asset'
    )
    
block.launch(server_name="0.0.0.0", share=True)