Spaces:
Running
on
L4
Running
on
L4
File size: 13,787 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# A modified version of DiT (Diffusion Transformer) to support directly dealing with 3D primitives with shape of [batch_size, sequence_length, dim_feat]
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# DiT: https://github.dev/facebookresearch/DiT
# --------------------------------------------------------
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
import numpy as np
import math
from itertools import repeat
import collections.abc
from .attention import MemEffCrossAttention, MemEffAttention
from .utils import TimestepEmbedder, Mlp, modulate
#################################################################################
# Core DiT Model #
#################################################################################
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, cross_attn_cond_dim, num_heads, mlp_ratio=4.0, proj_bias=False, gradient_checkpointing=False, **block_kwargs):
super().__init__()
self.gradient_checkpointing = gradient_checkpointing
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.crossattn = MemEffCrossAttention(dim=hidden_size, dim_q=hidden_size, dim_k=cross_attn_cond_dim, dim_v=cross_attn_cond_dim, num_heads=num_heads, qkv_bias=True, proj_bias=proj_bias, attn_drop=0.0, proj_drop=0.0, gradient_checkpointing=gradient_checkpointing, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = MemEffAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=True, proj_bias=proj_bias, attn_drop=0.0, proj_drop=0.0, gradient_checkpointing=gradient_checkpointing, **block_kwargs)
self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 9 * hidden_size, bias=True)
)
def forward(self, x, cross_attn_cond, mod_cond):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, x, cross_attn_cond, mod_cond, use_reentrant=False)
else:
return self._forward(x, cross_attn_cond, mod_cond)
def _forward(self, x, cross_attn_cond, mod_cond):
# cross_attn_cond: conditions that use cross attention to cond, would be image tokens typically [B, L_cond, D_cond]
# mod_cond: conditions that uses modulation to cond, would be timestep typically [B, D_mod]
shift_mca, scale_mca, gate_mca, shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod_cond).chunk(9, dim=1)
x = x + gate_mca.unsqueeze(1) * self.crossattn(modulate(self.norm1(x), shift_mca, scale_mca), cross_attn_cond, cross_attn_cond)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm2(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, seq_length, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class PointEmbed(nn.Module):
def __init__(self, hidden_dim=48, dim=128):
super().__init__()
assert hidden_dim % 6 == 0
self.embedding_dim = hidden_dim
e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
e = torch.stack([
torch.cat([e, torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6), e,
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6), e]),
])
self.register_buffer('basis', e) # 3 x 16
self.mlp = nn.Linear(self.embedding_dim+3, dim)
@staticmethod
def embed(input, basis):
projections = torch.einsum('bnd,de->bne', input, basis)
embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
return embeddings
def forward(self, input):
# input: B x N x 3
embed = self.mlp(torch.cat([self.embed(input, self.basis), input], dim=2)) # B x N x C
return embed
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
seq_length=2,
in_channels=4,
condition_channels=512,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
cond_drop_prob=0.0,
attn_proj_bias=False,
learn_sigma=True,
gradient_checkpointing=False,
):
super().__init__()
self.gradient_checkpointing = gradient_checkpointing
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.seq_length = seq_length
self.num_heads = num_heads
self.cond_drop_prob = cond_drop_prob
if self.cond_drop_prob > 0:
self.null_cond_embedding = nn.Parameter(torch.randn(condition_channels))
# no need to patchify as prim representation is already patch-wise
self.x_embedder = nn.Linear(in_channels, hidden_size)
# self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, condition_channels, num_heads, mlp_ratio=mlp_ratio, proj_bias=attn_proj_bias, gradient_checkpointing=gradient_checkpointing) for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, seq_length, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# # Initialize (and freeze) pos_embed by sin-cos embedding:
# pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
# self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, y, precision_dtype=torch.float32, enable_amp=False):
"""
Forward pass of DiT.
x: (N, T, D)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = self.x_embedder(x)
t = self.t_embedder(t) # (N, D)
if self.cond_drop_prob > 0 and self.training:
drop_mask = torch.rand(y.shape[0], device=y.device) < self.cond_drop_prob
null_cond_embed = self.null_cond_embedding[None, None, :]
y = torch.where(drop_mask[:, None, None], null_cond_embed, y)
with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=enable_amp):
for block in self.blocks:
x = block(x=x, cross_attn_cond=y, mod_cond=t) # (N, T, D)
#TODO: final layer only has timestep conditions, no sure if could be better
x = self.final_layer(x, t) # (N, T, D)
return x
def forward_with_cfg(self, x, t, y, cfg_scale=0.0, precision_dtype=torch.float32, enable_amp=False):
combined = torch.cat([x, x], dim=0)
combined_t = torch.cat([t, t], dim=0)
y_null = self.null_cond_embedding.expand_as(y)
combined_y = torch.cat([y, y_null], dim=0)
model_out = self.forward(combined, combined_t, combined_y, precision_dtype, enable_amp)
eps = model_out
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
return half_eps
class DiTAdditivePosEmb(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
seq_length=2,
in_channels=4,
condition_channels=512,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
attn_proj_bias=False,
learn_sigma=True,
gradient_checkpointing=False,
):
super().__init__()
self.gradient_checkpointing = gradient_checkpointing
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.seq_length = seq_length
self.num_heads = num_heads
# no need to patchify as prim representation is already patch-wise
self.point_emb = PointEmbed(hidden_dim=48, dim=hidden_size)
self.x_embedder = nn.Linear(in_channels, hidden_size)
# self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, condition_channels, num_heads, mlp_ratio=mlp_ratio, proj_bias=attn_proj_bias, gradient_checkpointing=gradient_checkpointing) for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, seq_length, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# # Initialize (and freeze) pos_embed by sin-cos embedding:
# pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
# self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, y, precision_dtype=torch.float32, enable_amp=False):
"""
Forward pass of DiT.
x: (N, T, D)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
point = x[:, :, 1:4]
point_emb = self.point_emb(point)
x = self.x_embedder(x) + point_emb
t = self.t_embedder(t) # (N, D)
with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=enable_amp):
for block in self.blocks:
x = block(x=x, cross_attn_cond=y, mod_cond=t) # (N, T, D)
#TODO: final layer only has timestep conditions, no sure if could be better
x = self.final_layer(x, t) # (N, T, D)
return x |