File size: 13,787 Bytes
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# A modified version of DiT (Diffusion Transformer) to support directly dealing with 3D primitives with shape of [batch_size, sequence_length, dim_feat]

# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# DiT: https://github.dev/facebookresearch/DiT
# --------------------------------------------------------

import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
import numpy as np
import math
from itertools import repeat
import collections.abc
from .attention import MemEffCrossAttention, MemEffAttention
from .utils import TimestepEmbedder, Mlp, modulate


#################################################################################
#                                 Core DiT Model                                #
#################################################################################

class DiTBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """
    def __init__(self, hidden_size, cross_attn_cond_dim, num_heads, mlp_ratio=4.0, proj_bias=False, gradient_checkpointing=False, **block_kwargs):
        super().__init__()
        self.gradient_checkpointing = gradient_checkpointing
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.crossattn = MemEffCrossAttention(dim=hidden_size, dim_q=hidden_size, dim_k=cross_attn_cond_dim, dim_v=cross_attn_cond_dim, num_heads=num_heads, qkv_bias=True, proj_bias=proj_bias, attn_drop=0.0, proj_drop=0.0, gradient_checkpointing=gradient_checkpointing, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = MemEffAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=True, proj_bias=proj_bias, attn_drop=0.0, proj_drop=0.0, gradient_checkpointing=gradient_checkpointing, **block_kwargs)
        self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 9 * hidden_size, bias=True)
        )

    def forward(self, x, cross_attn_cond, mod_cond):
        if self.training and self.gradient_checkpointing:
            return checkpoint(self._forward, x, cross_attn_cond, mod_cond, use_reentrant=False)
        else:
            return self._forward(x, cross_attn_cond, mod_cond)

    def _forward(self, x, cross_attn_cond, mod_cond):
        # cross_attn_cond: conditions that use cross attention to cond, would be image tokens typically [B, L_cond, D_cond]
        # mod_cond: conditions that uses modulation to cond, would be timestep typically [B, D_mod]
        shift_mca, scale_mca, gate_mca, shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod_cond).chunk(9, dim=1)
        x = x + gate_mca.unsqueeze(1) * self.crossattn(modulate(self.norm1(x), shift_mca, scale_mca), cross_attn_cond, cross_attn_cond)
        x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm2(x), shift_msa, scale_msa))
        x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp))
        return x


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, seq_length, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x

class PointEmbed(nn.Module):
    def __init__(self, hidden_dim=48, dim=128):
        super().__init__()

        assert hidden_dim % 6 == 0

        self.embedding_dim = hidden_dim
        e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
        e = torch.stack([
            torch.cat([e, torch.zeros(self.embedding_dim // 6),
                        torch.zeros(self.embedding_dim // 6)]),
            torch.cat([torch.zeros(self.embedding_dim // 6), e,
                        torch.zeros(self.embedding_dim // 6)]),
            torch.cat([torch.zeros(self.embedding_dim // 6),
                        torch.zeros(self.embedding_dim // 6), e]),
        ])
        self.register_buffer('basis', e)  # 3 x 16

        self.mlp = nn.Linear(self.embedding_dim+3, dim)

    @staticmethod
    def embed(input, basis):
        projections = torch.einsum('bnd,de->bne', input, basis)
        embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
        return embeddings
    
    def forward(self, input):
        # input: B x N x 3
        embed = self.mlp(torch.cat([self.embed(input, self.basis), input], dim=2)) # B x N x C
        return embed

class DiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
        self,
        seq_length=2,
        in_channels=4,
        condition_channels=512,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        cond_drop_prob=0.0,
        attn_proj_bias=False,
        learn_sigma=True,
        gradient_checkpointing=False,
    ):
        super().__init__()
        self.gradient_checkpointing = gradient_checkpointing
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.seq_length = seq_length
        self.num_heads = num_heads
        self.cond_drop_prob = cond_drop_prob
        if self.cond_drop_prob > 0:
            self.null_cond_embedding = nn.Parameter(torch.randn(condition_channels))

        # no need to patchify as prim representation is already patch-wise
        self.x_embedder = nn.Linear(in_channels, hidden_size)
        # self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)

        self.blocks = nn.ModuleList([
            DiTBlock(hidden_size, condition_channels, num_heads, mlp_ratio=mlp_ratio, proj_bias=attn_proj_bias, gradient_checkpointing=gradient_checkpointing) for _ in range(depth)
        ])
        self.final_layer = FinalLayer(hidden_size, seq_length, self.out_channels)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # # Initialize (and freeze) pos_embed by sin-cos embedding:
        # pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
        # self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.bias, 0)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def forward(self, x, t, y, precision_dtype=torch.float32, enable_amp=False):
        """
        Forward pass of DiT.
        x: (N, T, D)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x = self.x_embedder(x)
        t = self.t_embedder(t)                   # (N, D)
        if self.cond_drop_prob > 0 and self.training:
            drop_mask = torch.rand(y.shape[0], device=y.device) < self.cond_drop_prob
            null_cond_embed = self.null_cond_embedding[None, None, :]
            y = torch.where(drop_mask[:, None, None], null_cond_embed, y)
        with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=enable_amp):
            for block in self.blocks:
                x = block(x=x, cross_attn_cond=y, mod_cond=t)                      # (N, T, D)
            #TODO: final layer only has timestep conditions, no sure if could be better
            x = self.final_layer(x, t)                # (N, T, D)
        return x

    def forward_with_cfg(self, x, t, y, cfg_scale=0.0, precision_dtype=torch.float32, enable_amp=False):
        combined = torch.cat([x, x], dim=0)
        combined_t = torch.cat([t, t], dim=0)
        y_null = self.null_cond_embedding.expand_as(y)
        combined_y = torch.cat([y, y_null], dim=0)
        model_out = self.forward(combined, combined_t, combined_y, precision_dtype, enable_amp)
        eps = model_out
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        return half_eps

class DiTAdditivePosEmb(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
        self,
        seq_length=2,
        in_channels=4,
        condition_channels=512,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        attn_proj_bias=False,
        learn_sigma=True,
        gradient_checkpointing=False,
    ):
        super().__init__()
        self.gradient_checkpointing = gradient_checkpointing
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.seq_length = seq_length
        self.num_heads = num_heads

        # no need to patchify as prim representation is already patch-wise
        self.point_emb = PointEmbed(hidden_dim=48, dim=hidden_size)
        self.x_embedder = nn.Linear(in_channels, hidden_size)
        # self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)

        self.blocks = nn.ModuleList([
            DiTBlock(hidden_size, condition_channels, num_heads, mlp_ratio=mlp_ratio, proj_bias=attn_proj_bias, gradient_checkpointing=gradient_checkpointing) for _ in range(depth)
        ])
        self.final_layer = FinalLayer(hidden_size, seq_length, self.out_channels)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # # Initialize (and freeze) pos_embed by sin-cos embedding:
        # pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
        # self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.bias, 0)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def forward(self, x, t, y, precision_dtype=torch.float32, enable_amp=False):
        """
        Forward pass of DiT.
        x: (N, T, D)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        point = x[:, :, 1:4]
        point_emb = self.point_emb(point)
        x = self.x_embedder(x) + point_emb
        t = self.t_embedder(t)                   # (N, D)
        with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=enable_amp):
            for block in self.blocks:
                x = block(x=x, cross_attn_cond=y, mod_cond=t)                      # (N, T, D)
            #TODO: final layer only has timestep conditions, no sure if could be better
            x = self.final_layer(x, t)                # (N, T, D)
        return x