3DTopia-XL / dva /io.py
FrozenBurning
single view to 3D init release
81ecb2b
raw
history blame
1.69 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import cv2
import numpy as np
import copy
import importlib
from typing import Any, Dict
def load_module(module_name, class_name=None, silent: bool = False):
module = importlib.import_module(module_name)
return getattr(module, class_name) if class_name else module
def load_class(class_name):
return load_module(*class_name.rsplit(".", 1))
def load_from_config(config, **kwargs):
"""Instantiate an object given a config and arguments."""
assert "class_name" in config and "module_name" not in config
config = copy.deepcopy(config)
class_name = config.pop("class_name")
object_class = load_class(class_name)
return object_class(**config, **kwargs)
def load_opencv_calib(extrin_path, intrin_path):
cameras = {}
fse = cv2.FileStorage()
fse.open(extrin_path, cv2.FileStorage_READ)
fsi = cv2.FileStorage()
fsi.open(intrin_path, cv2.FileStorage_READ)
names = [
fse.getNode("names").at(c).string() for c in range(fse.getNode("names").size())
]
for camera in names:
rot = fse.getNode(f"R_{camera}").mat()
R = fse.getNode(f"Rot_{camera}").mat()
T = fse.getNode(f"T_{camera}").mat()
R_pred = cv2.Rodrigues(rot)[0]
assert np.all(np.isclose(R_pred, R))
K = fsi.getNode(f"K_{camera}").mat()
cameras[camera] = {
"Rt": np.concatenate([R, T], axis=1).astype(np.float32),
"K": K.astype(np.float32),
}
return cameras