Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import pymeshlab as pml | |
from importlib.metadata import version | |
PML_VER = version('pymeshlab') | |
# the code assumes the latest 2023.12 version, but we can patch older versions | |
if PML_VER.startswith('0.2'): | |
# monkey patch for 0.2 (only the used functions in this file!) | |
pml.MeshSet.meshing_decimation_quadric_edge_collapse = pml.MeshSet.simplification_quadric_edge_collapse_decimation | |
pml.MeshSet.meshing_isotropic_explicit_remeshing = pml.MeshSet.remeshing_isotropic_explicit_remeshing | |
pml.MeshSet.meshing_remove_unreferenced_vertices = pml.MeshSet.remove_unreferenced_vertices | |
pml.MeshSet.meshing_merge_close_vertices = pml.MeshSet.merge_close_vertices | |
pml.MeshSet.meshing_remove_duplicate_faces = pml.MeshSet.remove_duplicate_faces | |
pml.MeshSet.meshing_remove_null_faces = pml.MeshSet.remove_zero_area_faces | |
pml.MeshSet.meshing_remove_connected_component_by_diameter = pml.MeshSet.remove_isolated_pieces_wrt_diameter | |
pml.MeshSet.meshing_remove_connected_component_by_face_number = pml.MeshSet.remove_isolated_pieces_wrt_face_num | |
pml.MeshSet.meshing_repair_non_manifold_edges = pml.MeshSet.repair_non_manifold_edges_by_removing_faces | |
pml.MeshSet.meshing_repair_non_manifold_vertices = pml.MeshSet.repair_non_manifold_vertices_by_splitting | |
pml.PercentageValue = pml.Percentage | |
pml.PureValue = float | |
elif PML_VER.startswith('2022.2'): | |
# monkey patch for 2022.2 | |
pml.PercentageValue = pml.Percentage | |
pml.PureValue = pml.AbsoluteValue | |
def rotation_matrix(axis, angle_deg): | |
angle_rad = np.radians(angle_deg) | |
if axis == 'x': | |
return np.array([[1, 0, 0], | |
[0, np.cos(angle_rad), -np.sin(angle_rad)], | |
[0, np.sin(angle_rad), np.cos(angle_rad)]]).astype(np.float32) | |
elif axis == 'y': | |
return np.array([[np.cos(angle_rad), 0, np.sin(angle_rad)], | |
[0, 1, 0], | |
[-np.sin(angle_rad), 0, np.cos(angle_rad)]]).astype(np.float32) | |
elif axis == 'z': | |
return np.array([[np.cos(angle_rad), -np.sin(angle_rad), 0], | |
[np.sin(angle_rad), np.cos(angle_rad), 0], | |
[0, 0, 1]]).astype(np.float32) | |
else: | |
raise ValueError("Axis must be 'x', 'y', or 'z'") | |
def scale_to_unit_sphere(points): | |
max_xyz, _ = points.max(0) | |
min_xyz, _ = points.min(0) | |
bb_centroid = (max_xyz + min_xyz) / 2. | |
zero_mean_points = points - bb_centroid | |
dist = np.linalg.norm(points, axis=1) | |
normalized_points = zero_mean_points / np.max(dist) | |
return normalized_points | |
def scale_to_unit_cube(points): | |
max_xyz, _ = points.max(0) | |
min_xyz, _ = points.min(0) | |
bb_centroid = (max_xyz + min_xyz) / 2. | |
global_scale_max = (max_xyz - min_xyz).max() | |
zero_mean_points = points - bb_centroid | |
normalized_points = zero_mean_points * (1.8 / global_scale_max) | |
return normalized_points | |
def decimate_mesh( | |
verts, faces, target=5e4, backend="pymeshlab", remesh=False, optimalplacement=True | |
): | |
""" perform mesh decimation. | |
Args:pml | |
verts (np.ndarray): mesh vertices, float [N, 3] | |
faces (np.ndarray): mesh faces, int [M, 3] | |
target (int): targeted number of faces | |
backend (str, optional): algorithm backend, can be "pymeshlab" or "pyfqmr". Defaults to "pymeshlab". | |
remesh (bool, optional): whether to remesh after decimation. Defaults to False. | |
optimalplacement (bool, optional): For flat mesh, use False to prevent spikes. Defaults to True. | |
Returns: | |
Tuple[np.ndarray]: vertices and faces after decimation. | |
""" | |
_ori_vert_shape = verts.shape | |
_ori_face_shape = faces.shape | |
if backend == "pyfqmr": | |
import pyfqmr | |
solver = pyfqmr.Simplify() | |
solver.setMesh(verts, faces) | |
solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False) | |
verts, faces, normals = solver.getMesh() | |
else: | |
m = pml.Mesh(verts, faces) | |
ms = pml.MeshSet() | |
ms.add_mesh(m, "mesh") # will copy! | |
# filters | |
# ms.meshing_decimation_clustering(threshold=pml.PercentageValue(1)) | |
ms.meshing_decimation_quadric_edge_collapse( | |
targetfacenum=int(target), optimalplacement=optimalplacement | |
) | |
if remesh: | |
# ms.apply_coord_taubin_smoothing() | |
ms.meshing_isotropic_explicit_remeshing( | |
iterations=3, targetlen=pml.PercentageValue(1) | |
) | |
# extract mesh | |
m = ms.current_mesh() | |
m.compact() | |
verts = m.vertex_matrix() | |
faces = m.face_matrix() | |
print(f"[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}") | |
return verts, faces | |
def clean_mesh( | |
verts, | |
faces, | |
v_pct=1, | |
min_f=64, | |
min_d=20, | |
repair=True, | |
remesh=True, | |
remesh_size=0.01, | |
remesh_iters=3, | |
): | |
""" perform mesh cleaning, including floater removal, non manifold repair, and remeshing. | |
Args: | |
verts (np.ndarray): mesh vertices, float [N, 3] | |
faces (np.ndarray): mesh faces, int [M, 3] | |
v_pct (int, optional): percentage threshold to merge close vertices. Defaults to 1. | |
min_f (int, optional): maximal number of faces for isolated component to remove. Defaults to 64. | |
min_d (int, optional): maximal diameter percentage of isolated component to remove. Defaults to 20. | |
repair (bool, optional): whether to repair non-manifold faces (cannot gurantee). Defaults to True. | |
remesh (bool, optional): whether to perform a remeshing after all cleaning. Defaults to True. | |
remesh_size (float, optional): the targeted edge length for remeshing. Defaults to 0.01. | |
remesh_iters (int, optional): the iterations of remeshing. Defaults to 3. | |
Returns: | |
Tuple[np.ndarray]: vertices and faces after decimation. | |
""" | |
# verts: [N, 3] | |
# faces: [N, 3] | |
_ori_vert_shape = verts.shape | |
_ori_face_shape = faces.shape | |
m = pml.Mesh(verts, faces) | |
ms = pml.MeshSet() | |
ms.add_mesh(m, "mesh") # will copy! | |
# filters | |
ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces | |
if v_pct > 0: | |
ms.meshing_merge_close_vertices( | |
threshold=pml.PercentageValue(v_pct) | |
) # 1/10000 of bounding box diagonal | |
ms.meshing_remove_duplicate_faces() # faces defined by the same verts | |
ms.meshing_remove_null_faces() # faces with area == 0 | |
if min_d > 0: | |
ms.meshing_remove_connected_component_by_diameter( | |
mincomponentdiag=pml.PercentageValue(min_d) | |
) | |
if min_f > 0: | |
ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f) | |
if repair: | |
# ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True) | |
ms.meshing_repair_non_manifold_edges(method=0) | |
ms.meshing_repair_non_manifold_vertices(vertdispratio=0) | |
if remesh: | |
# ms.apply_coord_taubin_smoothing() | |
ms.meshing_isotropic_explicit_remeshing( | |
iterations=remesh_iters, targetlen=pml.PureValue(remesh_size) | |
) | |
# extract mesh | |
m = ms.current_mesh() | |
m.compact() | |
verts = m.vertex_matrix() | |
faces = m.face_matrix() | |
print(f"[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}") | |
return verts, faces | |
def compute_edge_to_face_mapping(faces): | |
""" compute edge to face mapping. | |
Args: | |
faces (torch.Tensor): mesh faces, int [M, 3] | |
Returns: | |
torch.Tensor: indices to faces for each edge, long, [N, 2] | |
""" | |
# Get unique edges | |
# Create all edges, packed by triangle | |
all_edges = torch.cat(( | |
torch.stack((faces[:, 0], faces[:, 1]), dim=-1), | |
torch.stack((faces[:, 1], faces[:, 2]), dim=-1), | |
torch.stack((faces[:, 2], faces[:, 0]), dim=-1), | |
), dim=-1).view(-1, 2) | |
# Swap edge order so min index is always first | |
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) | |
sorted_edges = torch.cat(( | |
torch.gather(all_edges, 1, order), | |
torch.gather(all_edges, 1, 1 - order) | |
), dim=-1) | |
# Elliminate duplicates and return inverse mapping | |
unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) | |
tris = torch.arange(faces.shape[0]).repeat_interleave(3).cuda() | |
tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() | |
# Compute edge to face table | |
mask0 = order[:,0] == 0 | |
mask1 = order[:,0] == 1 | |
tris_per_edge[idx_map[mask0], 0] = tris[mask0] | |
tris_per_edge[idx_map[mask1], 1] = tris[mask1] | |
return tris_per_edge |