# Modified from OpenAI's diffusion repos # GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py # ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion # IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py from . import gaussian_diffusion as gd from .respace import SpacedDiffusion, space_timesteps def create_diffusion( timestep_respacing, noise_schedule="linear", use_kl=False, sigma_small=False, parameterization="eps", learn_sigma=True, rescale_learned_sigmas=False, diffusion_steps=1000 ): betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps) if use_kl: loss_type = gd.LossType.RESCALED_KL elif rescale_learned_sigmas: loss_type = gd.LossType.RESCALED_MSE else: loss_type = gd.LossType.MSE if timestep_respacing is None or timestep_respacing == "": timestep_respacing = [diffusion_steps] if parameterization == "eps": model_mean_type = gd.ModelMeanType.EPSILON elif parameterization == "xstart": model_mean_type = gd.ModelMeanType.START_X elif parameterization == "v": model_mean_type = gd.ModelMeanType.VELOCITY else: raise NotImplementedError("Model Mean Type {} is not supported!".format(parameterization)) return SpacedDiffusion( use_timesteps=space_timesteps(diffusion_steps, timestep_respacing), betas=betas, model_mean_type=model_mean_type, model_var_type=( ( gd.ModelVarType.FIXED_LARGE if not sigma_small else gd.ModelVarType.FIXED_SMALL ) if not learn_sigma else gd.ModelVarType.LEARNED_RANGE ), loss_type=loss_type # rescale_timesteps=rescale_timesteps, )