Spaces:
Runtime error
Runtime error
File size: 17,744 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
from collections import defaultdict
from typing import Any, Dict, List, Optional, Set, Tuple
import networkx as nx
from networkx import DiGraph
from inference.enterprise.workflows.complier.utils import (
construct_input_selector,
construct_output_name,
construct_step_selector,
get_nodes_of_specific_kind,
get_step_input_selectors,
get_step_selector_from_its_output,
is_condition_step,
is_step_output_selector,
)
from inference.enterprise.workflows.constants import (
INPUT_NODE_KIND,
OUTPUT_NODE_KIND,
STEP_NODE_KIND,
)
from inference.enterprise.workflows.entities.outputs import JsonField
from inference.enterprise.workflows.entities.steps import StepInterface
from inference.enterprise.workflows.entities.validators import is_selector
from inference.enterprise.workflows.entities.workflows_specification import (
InputType,
StepType,
WorkflowSpecificationV1,
)
from inference.enterprise.workflows.errors import (
AmbiguousPathDetected,
NodesNotReachingOutputError,
NotAcyclicGraphError,
SelectorToUndefinedNodeError,
)
def prepare_execution_graph(workflow_specification: WorkflowSpecificationV1) -> DiGraph:
execution_graph = construct_graph(workflow_specification=workflow_specification)
if not nx.is_directed_acyclic_graph(execution_graph):
raise NotAcyclicGraphError(f"Detected cycle in execution graph.")
verify_each_node_reach_at_least_one_output(execution_graph=execution_graph)
verify_each_node_step_has_parent_in_the_same_branch(execution_graph=execution_graph)
verify_that_steps_are_connected_with_compatible_inputs(
execution_graph=execution_graph
)
return execution_graph
def construct_graph(workflow_specification: WorkflowSpecificationV1) -> DiGraph:
execution_graph = nx.DiGraph()
execution_graph = add_input_nodes_for_graph(
inputs=workflow_specification.inputs, execution_graph=execution_graph
)
execution_graph = add_steps_nodes_for_graph(
steps=workflow_specification.steps, execution_graph=execution_graph
)
execution_graph = add_output_nodes_for_graph(
outputs=workflow_specification.outputs, execution_graph=execution_graph
)
execution_graph = add_steps_edges(
workflow_specification=workflow_specification, execution_graph=execution_graph
)
return add_edges_for_outputs(
workflow_specification=workflow_specification, execution_graph=execution_graph
)
def add_input_nodes_for_graph(
inputs: List[InputType],
execution_graph: DiGraph,
) -> DiGraph:
for input_spec in inputs:
input_selector = construct_input_selector(input_name=input_spec.name)
execution_graph.add_node(
input_selector,
kind=INPUT_NODE_KIND,
definition=input_spec,
)
return execution_graph
def add_steps_nodes_for_graph(
steps: List[StepType],
execution_graph: DiGraph,
) -> DiGraph:
for step in steps:
step_selector = construct_step_selector(step_name=step.name)
execution_graph.add_node(
step_selector,
kind=STEP_NODE_KIND,
definition=step,
)
return execution_graph
def add_output_nodes_for_graph(
outputs: List[JsonField],
execution_graph: DiGraph,
) -> DiGraph:
for output_spec in outputs:
execution_graph.add_node(
construct_output_name(name=output_spec.name),
kind=OUTPUT_NODE_KIND,
definition=output_spec,
)
return execution_graph
def add_steps_edges(
workflow_specification: WorkflowSpecificationV1,
execution_graph: DiGraph,
) -> DiGraph:
for step in workflow_specification.steps:
input_selectors = get_step_input_selectors(step=step)
step_selector = construct_step_selector(step_name=step.name)
execution_graph = add_edges_for_step_inputs(
execution_graph=execution_graph,
input_selectors=input_selectors,
step_selector=step_selector,
)
if step.type == "Condition":
verify_edge_is_created_between_existing_nodes(
execution_graph=execution_graph,
start=step_selector,
end=step.step_if_true,
)
execution_graph.add_edge(step_selector, step.step_if_true)
verify_edge_is_created_between_existing_nodes(
execution_graph=execution_graph,
start=step_selector,
end=step.step_if_false,
)
execution_graph.add_edge(step_selector, step.step_if_false)
return execution_graph
def add_edges_for_step_inputs(
execution_graph: DiGraph,
input_selectors: Set[str],
step_selector: str,
) -> DiGraph:
for input_selector in input_selectors:
if is_step_output_selector(selector_or_value=input_selector):
input_selector = get_step_selector_from_its_output(
step_output_selector=input_selector
)
verify_edge_is_created_between_existing_nodes(
execution_graph=execution_graph,
start=input_selector,
end=step_selector,
)
execution_graph.add_edge(input_selector, step_selector)
return execution_graph
def add_edges_for_outputs(
workflow_specification: WorkflowSpecificationV1,
execution_graph: DiGraph,
) -> DiGraph:
for output in workflow_specification.outputs:
output_selector = output.selector
if is_step_output_selector(selector_or_value=output_selector):
output_selector = get_step_selector_from_its_output(
step_output_selector=output_selector
)
output_name = construct_output_name(name=output.name)
verify_edge_is_created_between_existing_nodes(
execution_graph=execution_graph,
start=output_selector,
end=output_name,
)
execution_graph.add_edge(output_selector, output_name)
return execution_graph
def verify_edge_is_created_between_existing_nodes(
execution_graph: DiGraph,
start: str,
end: str,
) -> None:
if not execution_graph.has_node(start):
raise SelectorToUndefinedNodeError(
f"Graph definition contains selector {start} that points to not defined element."
)
if not execution_graph.has_node(end):
raise SelectorToUndefinedNodeError(
f"Graph definition contains selector {end} that points to not defined element."
)
def verify_each_node_reach_at_least_one_output(
execution_graph: DiGraph,
) -> None:
all_nodes = set(execution_graph.nodes())
output_nodes = get_nodes_of_specific_kind(
execution_graph=execution_graph, kind=OUTPUT_NODE_KIND
)
nodes_without_outputs = get_nodes_that_do_not_produce_outputs(
execution_graph=execution_graph
)
nodes_that_must_be_reached = output_nodes.union(nodes_without_outputs)
nodes_reaching_output = (
get_nodes_that_are_reachable_from_pointed_ones_in_reversed_graph(
execution_graph=execution_graph,
pointed_nodes=nodes_that_must_be_reached,
)
)
nodes_not_reaching_output = all_nodes.difference(nodes_reaching_output)
if len(nodes_not_reaching_output) > 0:
raise NodesNotReachingOutputError(
f"Detected {len(nodes_not_reaching_output)} nodes not reaching any of output node:"
f"{nodes_not_reaching_output}."
)
def get_nodes_that_do_not_produce_outputs(execution_graph: DiGraph) -> Set[str]:
# assumption is that nodes without outputs will produce some side effect and shall be
# treated as output nodes while checking if there is no dangling steps in graph
step_nodes = get_nodes_of_specific_kind(
execution_graph=execution_graph, kind=STEP_NODE_KIND
)
return {
step_node
for step_node in step_nodes
if len(execution_graph.nodes[step_node]["definition"].get_output_names()) == 0
}
def get_nodes_that_are_reachable_from_pointed_ones_in_reversed_graph(
execution_graph: DiGraph,
pointed_nodes: Set[str],
) -> Set[str]:
result = set()
reversed_graph = execution_graph.reverse(copy=True)
for pointed_node in pointed_nodes:
nodes_reaching_pointed_one = list(
nx.dfs_postorder_nodes(reversed_graph, pointed_node)
)
result.update(nodes_reaching_pointed_one)
return result
def verify_each_node_step_has_parent_in_the_same_branch(
execution_graph: DiGraph,
) -> None:
"""
Conditional branching creates a bit of mess, in terms of determining which
steps to execute.
Let's imagine graph:
/ -> B -> C -> D
A -> IF < \
\ -> E -> F -> G -> H
where node G requires node C even though IF branched the execution. In other
words - the problem emerges if a node of kind STEP has a parent (node from which
it can be achieved) of kind STEP and this parent is in a different branch (point out that
we allow for a single step to have multiple steps as input, but they must be at the same
execution path - for instance if D requires an output from C and B - this is allowed).
Additionally, we must prevent situation when outcomes of branches started by two or more
condition steps merge with each other, as condition eval may result in contradictory
execution (2).
We need to detect that situation upfront, such that we can raise error of ambiguous execution path
rather than run time-consuming computations that will end up in error.
To detect problem, first we detect steps with more than one parent step.
From those steps we trace what sequence of steps would lead to execution of problematic one.
For each problematic node we take its parent nodes. Then, we analyse paths from
those parent nodes in reversed topological order (from those nodes towards entry nodes
of execution graph). While our analysis, on each path we denote `Condition` steps and
result of condition evaluation that must have been observed in runtime, to reach
the problematic node while graph execution in normal direction. If we detect that
for any `Condition` step we would need to output both True and False (more than one registered
next step of `Condition` step) - we raise error.
To detect problem (2) - we only let number of different condition steps considered be the number of
max condition steps in a single path from origin to parent of problematic step.
Beware that the latter part of algorithm has quite bad time complexity in general case.
Worst part of algorithm runs at O(V^4) - at least taking coarse, worst-case estimations.
In fact, there is not so bad:
* The number of step nodes with multiple parents that we loop over in main loop, reduces the number of
steps we iterate through in inner loops, as we are dealing with DAG (with quite limited amount of edges)
and for each multi-parent node takes at least two other nodes (to construct a suspicious group) -
so expected number of iterations in main loop is low - let's say 1-3 for a real graph.
* for any reasonable execution graph, the complexity should be acceptable.
"""
steps_with_more_than_one_parent = detect_steps_with_more_than_one_parent_step(
execution_graph=execution_graph
) # O(V+E)
if len(steps_with_more_than_one_parent) == 0:
return None
reversed_steps_graph = construct_reversed_steps_graph(
execution_graph=execution_graph
) # O(V+E)
reversed_topological_order = list(
nx.topological_sort(reversed_steps_graph)
) # O(V+E)
for step in steps_with_more_than_one_parent: # O(V)
verify_multi_parent_step_execution_paths(
reversed_steps_graph=reversed_steps_graph,
reversed_topological_order=reversed_topological_order,
step=step,
)
def detect_steps_with_more_than_one_parent_step(execution_graph: DiGraph) -> Set[str]:
steps_nodes = get_nodes_of_specific_kind(
execution_graph=execution_graph,
kind=STEP_NODE_KIND,
)
edges_of_steps_nodes = [edge for edge in execution_graph.edges()]
steps_parents = defaultdict(set)
for edge in edges_of_steps_nodes:
parent, child = edge
if parent not in steps_nodes or child not in steps_nodes:
continue
steps_parents[child].add(parent)
return {key for key, value in steps_parents.items() if len(value) > 1}
def construct_reversed_steps_graph(execution_graph: DiGraph) -> DiGraph:
reversed_steps_graph = execution_graph.reverse()
for node, node_data in list(reversed_steps_graph.nodes(data=True)):
if node_data.get("kind") != STEP_NODE_KIND:
reversed_steps_graph.remove_node(node)
return reversed_steps_graph
def verify_multi_parent_step_execution_paths(
reversed_steps_graph: nx.DiGraph,
reversed_topological_order: List[str],
step: str,
) -> None:
condition_steps_successors = defaultdict(set)
max_conditions_steps = 0
for normal_flow_predecessor in reversed_steps_graph.successors(step): # O(V)
reversed_flow_path = (
construct_reversed_path_to_multi_parent_step_parent( # O(E) -> O(V^2)
reversed_steps_graph=reversed_steps_graph,
reversed_topological_order=reversed_topological_order,
parent_step=normal_flow_predecessor,
step=step,
)
)
(
condition_steps_successors,
condition_steps,
) = denote_condition_steps_successors_in_normal_flow( # O(V)
reversed_steps_graph=reversed_steps_graph,
reversed_flow_path=reversed_flow_path,
condition_steps_successors=condition_steps_successors,
)
max_conditions_steps = max(condition_steps, max_conditions_steps)
if len(condition_steps_successors) > max_conditions_steps:
raise AmbiguousPathDetected(
f"In execution graph, detected collision of branches that originate in different condition steps."
)
for condition_step, potential_next_steps in condition_steps_successors.items():
if len(potential_next_steps) > 1:
raise AmbiguousPathDetected(
f"In execution graph, condition step: {condition_step} creates ambiguous execution paths."
)
def construct_reversed_path_to_multi_parent_step_parent(
reversed_steps_graph: nx.DiGraph,
reversed_topological_order: List[str],
parent_step: str,
step: str,
) -> List[str]:
normal_flow_path_nodes = nx.descendants(reversed_steps_graph, parent_step)
normal_flow_path_nodes.add(parent_step)
normal_flow_path_nodes.add(step)
return [n for n in reversed_topological_order if n in normal_flow_path_nodes]
def denote_condition_steps_successors_in_normal_flow(
reversed_steps_graph: nx.DiGraph,
reversed_flow_path: List[str],
condition_steps_successors: Dict[str, Set[str]],
) -> Tuple[Dict[str, Set[str]], int]:
conditions_steps = 0
if len(reversed_flow_path) == 0:
return condition_steps_successors, conditions_steps
previous_node = reversed_flow_path[0]
for node in reversed_flow_path[1:]:
if is_condition_step(execution_graph=reversed_steps_graph, node=node):
condition_steps_successors[node].add(previous_node)
conditions_steps += 1
previous_node = node
return condition_steps_successors, conditions_steps
def verify_that_steps_are_connected_with_compatible_inputs(
execution_graph: nx.DiGraph,
) -> None:
steps_nodes = get_nodes_of_specific_kind(
execution_graph=execution_graph,
kind=STEP_NODE_KIND,
)
for step in steps_nodes:
verify_step_inputs_selectors(step=step, execution_graph=execution_graph)
def verify_step_inputs_selectors(step: str, execution_graph: nx.DiGraph) -> None:
step_definition = execution_graph.nodes[step]["definition"]
all_inputs = step_definition.get_input_names()
for input_step in all_inputs:
input_selector_or_value = getattr(step_definition, input_step)
if issubclass(type(input_selector_or_value), list):
for idx, single_selector_or_value in enumerate(input_selector_or_value):
validate_step_definition_input(
step_definition=step_definition,
input_name=input_step,
execution_graph=execution_graph,
input_selector_or_value=single_selector_or_value,
index=idx,
)
else:
validate_step_definition_input(
step_definition=step_definition,
input_name=input_step,
execution_graph=execution_graph,
input_selector_or_value=input_selector_or_value,
)
def validate_step_definition_input(
step_definition: StepInterface,
input_name: str,
execution_graph: nx.DiGraph,
input_selector_or_value: Any,
index: Optional[int] = None,
) -> None:
if not is_selector(selector_or_value=input_selector_or_value):
return None
if is_step_output_selector(selector_or_value=input_selector_or_value):
input_selector_or_value = get_step_selector_from_its_output(
step_output_selector=input_selector_or_value
)
input_node_definition = execution_graph.nodes[input_selector_or_value]["definition"]
step_definition.validate_field_selector(
field_name=input_name,
input_step=input_node_definition,
index=index,
)
|