Spaces:
Runtime error
Runtime error
import json | |
import urllib.parse | |
from enum import Enum | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union | |
import requests | |
from requests import Response | |
from requests_toolbelt import MultipartEncoder | |
from inference.core import logger | |
from inference.core.cache import cache | |
from inference.core.entities.types import ( | |
DatasetID, | |
ModelType, | |
TaskType, | |
VersionID, | |
WorkspaceID, | |
) | |
from inference.core.env import API_BASE_URL | |
from inference.core.exceptions import ( | |
MalformedRoboflowAPIResponseError, | |
MalformedWorkflowResponseError, | |
MissingDefaultModelError, | |
RoboflowAPIConnectionError, | |
RoboflowAPIIAlreadyAnnotatedError, | |
RoboflowAPIIAnnotationRejectionError, | |
RoboflowAPIImageUploadRejectionError, | |
RoboflowAPINotAuthorizedError, | |
RoboflowAPINotNotFoundError, | |
RoboflowAPIUnsuccessfulRequestError, | |
WorkspaceLoadError, | |
) | |
from inference.core.utils.requests import api_key_safe_raise_for_status | |
from inference.core.utils.url_utils import wrap_url | |
MODEL_TYPE_DEFAULTS = { | |
"object-detection": "yolov5v2s", | |
"instance-segmentation": "yolact", | |
"classification": "vit", | |
"keypoint-detection": "yolov8n", | |
} | |
PROJECT_TASK_TYPE_KEY = "project_task_type" | |
MODEL_TYPE_KEY = "model_type" | |
NOT_FOUND_ERROR_MESSAGE = ( | |
"Could not find requested Roboflow resource. Check that the provided dataset and " | |
"version are correct, and check that the provided Roboflow API key has the correct permissions." | |
) | |
def raise_from_lambda( | |
inner_error: Exception, exception_type: Type[Exception], message: str | |
) -> None: | |
raise exception_type(message) from inner_error | |
DEFAULT_ERROR_HANDLERS = { | |
401: lambda e: raise_from_lambda( | |
e, | |
RoboflowAPINotAuthorizedError, | |
"Unauthorized access to roboflow API - check API key. Visit " | |
"https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key to learn how to retrieve one.", | |
), | |
404: lambda e: raise_from_lambda( | |
e, RoboflowAPINotNotFoundError, NOT_FOUND_ERROR_MESSAGE | |
), | |
} | |
def wrap_roboflow_api_errors( | |
http_errors_handlers: Optional[ | |
Dict[int, Callable[[Union[requests.exceptions.HTTPError]], None]] | |
] = None, | |
) -> callable: | |
def decorator(function: callable) -> callable: | |
def wrapper(*args, **kwargs) -> Any: | |
try: | |
return function(*args, **kwargs) | |
except (requests.exceptions.ConnectionError, ConnectionError) as error: | |
raise RoboflowAPIConnectionError( | |
"Could not connect to Roboflow API." | |
) from error | |
except requests.exceptions.HTTPError as error: | |
user_handler_override = ( | |
http_errors_handlers if http_errors_handlers is not None else {} | |
) | |
status_code = error.response.status_code | |
default_handler = DEFAULT_ERROR_HANDLERS.get(status_code) | |
error_handler = user_handler_override.get(status_code, default_handler) | |
if error_handler is not None: | |
error_handler(error) | |
raise RoboflowAPIUnsuccessfulRequestError( | |
f"Unsuccessful request to Roboflow API with response code: {status_code}" | |
) from error | |
except requests.exceptions.InvalidJSONError as error: | |
raise MalformedRoboflowAPIResponseError( | |
"Could not decode JSON response from Roboflow API." | |
) from error | |
return wrapper | |
return decorator | |
def get_roboflow_workspace(api_key: str) -> WorkspaceID: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/", | |
params=[("api_key", api_key), ("nocache", "true")], | |
) | |
api_key_info = _get_from_url(url=api_url) | |
workspace_id = api_key_info.get("workspace") | |
if workspace_id is None: | |
raise WorkspaceLoadError(f"Empty workspace encountered, check your API key.") | |
return workspace_id | |
def get_roboflow_dataset_type( | |
api_key: str, workspace_id: WorkspaceID, dataset_id: DatasetID | |
) -> TaskType: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}", | |
params=[("api_key", api_key), ("nocache", "true")], | |
) | |
dataset_info = _get_from_url(url=api_url) | |
project_task_type = dataset_info.get("project", {}) | |
if "type" not in project_task_type: | |
logger.warning( | |
f"Project task type not defined for workspace={workspace_id} and dataset={dataset_id}, defaulting " | |
f"to object-detection." | |
) | |
return project_task_type.get("type", "object-detection") | |
def get_roboflow_model_type( | |
api_key: str, | |
workspace_id: WorkspaceID, | |
dataset_id: DatasetID, | |
version_id: VersionID, | |
project_task_type: ModelType, | |
) -> ModelType: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/{version_id}", | |
params=[("api_key", api_key), ("nocache", "true")], | |
) | |
version_info = _get_from_url(url=api_url) | |
model_type = version_info["version"] | |
if "modelType" not in model_type: | |
if project_task_type not in MODEL_TYPE_DEFAULTS: | |
raise MissingDefaultModelError( | |
f"Could not set default model for {project_task_type}" | |
) | |
logger.warning( | |
f"Model type not defined - using default for {project_task_type} task." | |
) | |
return model_type.get("modelType", MODEL_TYPE_DEFAULTS[project_task_type]) | |
class ModelEndpointType(Enum): | |
ORT = "ort" | |
CORE_MODEL = "core_model" | |
def get_roboflow_model_data( | |
api_key: str, | |
model_id: str, | |
endpoint_type: ModelEndpointType, | |
device_id: str, | |
) -> dict: | |
api_data_cache_key = f"roboflow_api_data:{endpoint_type.value}:{model_id}" | |
api_data = cache.get(api_data_cache_key) | |
if api_data is not None: | |
logger.debug(f"Loaded model data from cache with key: {api_data_cache_key}.") | |
return api_data | |
else: | |
params = [ | |
("nocache", "true"), | |
("device", device_id), | |
("dynamic", "true"), | |
] | |
if api_key is not None: | |
params.append(("api_key", api_key)) | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{endpoint_type.value}/{model_id}", | |
params=params, | |
) | |
api_data = _get_from_url(url=api_url) | |
cache.set( | |
api_data_cache_key, | |
api_data, | |
expire=10, | |
) | |
logger.debug( | |
f"Loaded model data from Roboflow API and saved to cache with key: {api_data_cache_key}." | |
) | |
return api_data | |
def get_roboflow_active_learning_configuration( | |
api_key: str, | |
workspace_id: WorkspaceID, | |
dataset_id: DatasetID, | |
) -> dict: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/active_learning", | |
params=[("api_key", api_key)], | |
) | |
return _get_from_url(url=api_url) | |
def register_image_at_roboflow( | |
api_key: str, | |
dataset_id: DatasetID, | |
local_image_id: str, | |
image_bytes: bytes, | |
batch_name: str, | |
tags: Optional[List[str]] = None, | |
) -> dict: | |
url = f"{API_BASE_URL}/dataset/{dataset_id}/upload" | |
params = [ | |
("api_key", api_key), | |
("batch", batch_name), | |
] | |
tags = tags if tags is not None else [] | |
for tag in tags: | |
params.append(("tag", tag)) | |
wrapped_url = wrap_url(_add_params_to_url(url=url, params=params)) | |
m = MultipartEncoder( | |
fields={ | |
"name": f"{local_image_id}.jpg", | |
"file": ("imageToUpload", image_bytes, "image/jpeg"), | |
} | |
) | |
response = requests.post( | |
url=wrapped_url, | |
data=m, | |
headers={"Content-Type": m.content_type}, | |
) | |
api_key_safe_raise_for_status(response=response) | |
parsed_response = response.json() | |
if not parsed_response.get("duplicate") and not parsed_response.get("success"): | |
raise RoboflowAPIImageUploadRejectionError( | |
f"Server rejected image: {parsed_response}" | |
) | |
return parsed_response | |
def annotate_image_at_roboflow( | |
api_key: str, | |
dataset_id: DatasetID, | |
local_image_id: str, | |
roboflow_image_id: str, | |
annotation_content: str, | |
annotation_file_type: str, | |
is_prediction: bool = True, | |
) -> dict: | |
url = f"{API_BASE_URL}/dataset/{dataset_id}/annotate/{roboflow_image_id}" | |
params = [ | |
("api_key", api_key), | |
("name", f"{local_image_id}.{annotation_file_type}"), | |
("prediction", str(is_prediction).lower()), | |
] | |
wrapped_url = wrap_url(_add_params_to_url(url=url, params=params)) | |
response = requests.post( | |
wrapped_url, | |
data=annotation_content, | |
headers={"Content-Type": "text/plain"}, | |
) | |
api_key_safe_raise_for_status(response=response) | |
parsed_response = response.json() | |
if "error" in parsed_response or not parsed_response.get("success"): | |
raise RoboflowAPIIAnnotationRejectionError( | |
f"Failed to save annotation for {roboflow_image_id}. API response: {parsed_response}" | |
) | |
return parsed_response | |
def get_roboflow_labeling_batches( | |
api_key: str, workspace_id: WorkspaceID, dataset_id: str | |
) -> dict: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/batches", | |
params=[("api_key", api_key)], | |
) | |
return _get_from_url(url=api_url) | |
def get_roboflow_labeling_jobs( | |
api_key: str, workspace_id: WorkspaceID, dataset_id: str | |
) -> dict: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/jobs", | |
params=[("api_key", api_key)], | |
) | |
return _get_from_url(url=api_url) | |
def get_workflow_specification( | |
api_key: str, | |
workspace_id: WorkspaceID, | |
workflow_name: str, | |
) -> dict: | |
api_url = _add_params_to_url( | |
url=f"{API_BASE_URL}/{workspace_id}/workflows/{workflow_name}", | |
params=[("api_key", api_key)], | |
) | |
response = _get_from_url(url=api_url) | |
if "workflow" not in response or "config" not in response["workflow"]: | |
raise MalformedWorkflowResponseError( | |
f"Could not found workflow specification in API response" | |
) | |
try: | |
return json.loads(response["workflow"]["config"]) | |
except (ValueError, TypeError) as error: | |
raise MalformedWorkflowResponseError( | |
"Could not decode workflow specification in Roboflow API response" | |
) from error | |
def get_from_url( | |
url: str, | |
json_response: bool = True, | |
) -> Union[Response, dict]: | |
return _get_from_url(url=url, json_response=json_response) | |
def _get_from_url(url: str, json_response: bool = True) -> Union[Response, dict]: | |
response = requests.get(wrap_url(url)) | |
api_key_safe_raise_for_status(response=response) | |
if json_response: | |
return response.json() | |
return response | |
def _add_params_to_url(url: str, params: List[Tuple[str, str]]) -> str: | |
if len(params) == 0: | |
return url | |
params_chunks = [ | |
f"{name}={urllib.parse.quote_plus(value)}" for name, value in params | |
] | |
parameters_string = "&".join(params_chunks) | |
return f"{url}?{parameters_string}" | |