Spaces:
Runtime error
Runtime error
Delete gradio_demo/app_generateOne.py
Browse files- gradio_demo/app_generateOne.py +0 -582
gradio_demo/app_generateOne.py
DELETED
@@ -1,582 +0,0 @@
|
|
1 |
-
import sys
|
2 |
-
sys.path.append('./')
|
3 |
-
import gradio as gr
|
4 |
-
import random
|
5 |
-
import numpy as np
|
6 |
-
from gradio_demo.character_template import character_man, lorapath_man
|
7 |
-
from gradio_demo.character_template import character_woman, lorapath_woman
|
8 |
-
from gradio_demo.character_template import styles, lorapath_styles
|
9 |
-
import torch
|
10 |
-
import os
|
11 |
-
from typing import Tuple, List
|
12 |
-
import copy
|
13 |
-
import argparse
|
14 |
-
from diffusers.utils import load_image
|
15 |
-
import cv2
|
16 |
-
from PIL import Image, ImageOps
|
17 |
-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
18 |
-
from controlnet_aux import OpenposeDetector
|
19 |
-
from controlnet_aux.open_pose.body import Body
|
20 |
-
|
21 |
-
try:
|
22 |
-
from inference.models import YOLOWorld
|
23 |
-
from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
|
24 |
-
from src.efficientvit.sam_model_zoo import create_sam_model
|
25 |
-
import supervision as sv
|
26 |
-
except:
|
27 |
-
print("YoloWorld can not be load")
|
28 |
-
|
29 |
-
try:
|
30 |
-
from groundingdino.models import build_model
|
31 |
-
from groundingdino.util import box_ops
|
32 |
-
from groundingdino.util.slconfig import SLConfig
|
33 |
-
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
34 |
-
from groundingdino.util.inference import annotate, predict
|
35 |
-
from segment_anything import build_sam, SamPredictor
|
36 |
-
import groundingdino.datasets.transforms as T
|
37 |
-
except:
|
38 |
-
print("groundingdino can not be load")
|
39 |
-
|
40 |
-
from src.pipelines.lora_pipeline import LoraMultiConceptPipeline
|
41 |
-
from src.prompt_attention.p2p_attention import AttentionReplace
|
42 |
-
from diffusers import ControlNetModel, StableDiffusionXLPipeline
|
43 |
-
from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward
|
44 |
-
|
45 |
-
CHARACTER_MAN_NAMES = list(character_man.keys())
|
46 |
-
CHARACTER_WOMAN_NAMES = list(character_woman.keys())
|
47 |
-
STYLE_NAMES = list(styles.keys())
|
48 |
-
MAX_SEED = np.iinfo(np.int32).max
|
49 |
-
|
50 |
-
### Description
|
51 |
-
title = r"""
|
52 |
-
<h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</h1>
|
53 |
-
"""
|
54 |
-
|
55 |
-
description = r"""
|
56 |
-
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<br>
|
57 |
-
|
58 |
-
How to use:<br>
|
59 |
-
1. Select two characters.
|
60 |
-
2. Enter a text prompt as done in normal text-to-image models.
|
61 |
-
3. Click the <b>Submit</b> button to start customizing.
|
62 |
-
4. Enjoy the generated image😊!
|
63 |
-
"""
|
64 |
-
|
65 |
-
article = r"""
|
66 |
-
---
|
67 |
-
📝 **Citation**
|
68 |
-
<br>
|
69 |
-
If our work is helpful for your research or applications, please cite us via:
|
70 |
-
```bibtex
|
71 |
-
@article{,
|
72 |
-
title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
|
73 |
-
author={},
|
74 |
-
journal={},
|
75 |
-
year={}
|
76 |
-
}
|
77 |
-
```
|
78 |
-
"""
|
79 |
-
|
80 |
-
tips = r"""
|
81 |
-
### Usage tips of OMG
|
82 |
-
1. Input text prompts to describe a man and a woman
|
83 |
-
"""
|
84 |
-
|
85 |
-
css = '''
|
86 |
-
.gradio-container {width: 85% !important}
|
87 |
-
'''
|
88 |
-
|
89 |
-
def sample_image(pipe,
|
90 |
-
input_prompt,
|
91 |
-
input_neg_prompt=None,
|
92 |
-
generator=None,
|
93 |
-
concept_models=None,
|
94 |
-
num_inference_steps=50,
|
95 |
-
guidance_scale=7.5,
|
96 |
-
controller=None,
|
97 |
-
stage=None,
|
98 |
-
region_masks=None,
|
99 |
-
lora_list = None,
|
100 |
-
styleL=None,
|
101 |
-
**extra_kargs
|
102 |
-
):
|
103 |
-
|
104 |
-
spatial_condition = extra_kargs.pop('spatial_condition')
|
105 |
-
if spatial_condition is not None:
|
106 |
-
spatial_condition_input = [spatial_condition] * len(input_prompt)
|
107 |
-
else:
|
108 |
-
spatial_condition_input = None
|
109 |
-
|
110 |
-
images = pipe(
|
111 |
-
prompt=input_prompt,
|
112 |
-
concept_models=concept_models,
|
113 |
-
negative_prompt=input_neg_prompt,
|
114 |
-
generator=generator,
|
115 |
-
guidance_scale=guidance_scale,
|
116 |
-
num_inference_steps=num_inference_steps,
|
117 |
-
cross_attention_kwargs={"scale": 0.8},
|
118 |
-
controller=controller,
|
119 |
-
stage=stage,
|
120 |
-
region_masks=region_masks,
|
121 |
-
lora_list=lora_list,
|
122 |
-
styleL=styleL,
|
123 |
-
image=spatial_condition_input,
|
124 |
-
**extra_kargs).images
|
125 |
-
|
126 |
-
return images
|
127 |
-
|
128 |
-
def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
|
129 |
-
image = np.asarray(image_source)
|
130 |
-
return image
|
131 |
-
|
132 |
-
def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
|
133 |
-
transform = T.Compose(
|
134 |
-
[
|
135 |
-
T.RandomResize([800], max_size=1333),
|
136 |
-
T.ToTensor(),
|
137 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
138 |
-
]
|
139 |
-
)
|
140 |
-
image = np.asarray(image_source)
|
141 |
-
image_transformed, _ = transform(image_source, None)
|
142 |
-
return image, image_transformed
|
143 |
-
|
144 |
-
def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
|
145 |
-
if segmentType=='GroundingDINO':
|
146 |
-
image_source, image = load_image_dino(image)
|
147 |
-
boxes, logits, phrases = predict(
|
148 |
-
model=segmentmodel,
|
149 |
-
image=image,
|
150 |
-
caption=TEXT_PROMPT,
|
151 |
-
box_threshold=0.3,
|
152 |
-
text_threshold=0.25
|
153 |
-
)
|
154 |
-
sam.set_image(image_source)
|
155 |
-
H, W, _ = image_source.shape
|
156 |
-
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
|
157 |
-
|
158 |
-
transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
|
159 |
-
masks, _, _ = sam.predict_torch(
|
160 |
-
point_coords=None,
|
161 |
-
point_labels=None,
|
162 |
-
boxes=transformed_boxes,
|
163 |
-
multimask_output=False,
|
164 |
-
)
|
165 |
-
masks=masks[0].squeeze(0)
|
166 |
-
else:
|
167 |
-
image_source = load_image_yoloworld(image)
|
168 |
-
segmentmodel.set_classes([TEXT_PROMPT])
|
169 |
-
results = segmentmodel.infer(image_source, confidence=confidence)
|
170 |
-
detections = sv.Detections.from_inference(results).with_nms(
|
171 |
-
class_agnostic=True, threshold=threshold
|
172 |
-
)
|
173 |
-
masks = None
|
174 |
-
if len(detections) != 0:
|
175 |
-
print(TEXT_PROMPT + " detected!")
|
176 |
-
sam.set_image(image_source, image_format="RGB")
|
177 |
-
masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False)
|
178 |
-
masks = torch.from_numpy(masks.squeeze())
|
179 |
-
|
180 |
-
return masks
|
181 |
-
|
182 |
-
def prepare_text(prompt, region_prompts):
|
183 |
-
'''
|
184 |
-
Args:
|
185 |
-
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
|
186 |
-
Returns:
|
187 |
-
full_prompt: subject1, attribute1 and subject2, attribute2, global text
|
188 |
-
context_prompt: subject1 and subject2, global text
|
189 |
-
entity_collection: [(subject1, attribute1), Location1]
|
190 |
-
'''
|
191 |
-
region_collection = []
|
192 |
-
|
193 |
-
regions = region_prompts.split('|')
|
194 |
-
|
195 |
-
for region in regions:
|
196 |
-
if region == '':
|
197 |
-
break
|
198 |
-
prompt_region, neg_prompt_region = region.split('-*-')
|
199 |
-
prompt_region = prompt_region.replace('[', '').replace(']', '')
|
200 |
-
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
|
201 |
-
|
202 |
-
region_collection.append((prompt_region, neg_prompt_region))
|
203 |
-
return (prompt, region_collection)
|
204 |
-
|
205 |
-
|
206 |
-
def build_model_sd(pretrained_model, controlnet_path, device, prompts):
|
207 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device)
|
208 |
-
pipe = LoraMultiConceptPipeline.from_pretrained(
|
209 |
-
pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
|
210 |
-
controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32)
|
211 |
-
revise_regionally_controlnet_forward(pipe.unet, controller)
|
212 |
-
pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16,
|
213 |
-
variant="fp16").to(device)
|
214 |
-
return pipe, controller, pipe_concept
|
215 |
-
|
216 |
-
def build_model_lora(pipe_concept, lora_paths, style_path, condition, args, pipe):
|
217 |
-
pipe_list = []
|
218 |
-
if condition == "Human pose":
|
219 |
-
controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
|
220 |
-
pipe.controlnet = controlnet
|
221 |
-
elif condition == "Canny Edge":
|
222 |
-
controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device)
|
223 |
-
pipe.controlnet = controlnet
|
224 |
-
elif condition == "Depth":
|
225 |
-
controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
|
226 |
-
pipe.controlnet = controlnet
|
227 |
-
|
228 |
-
if style_path is not None and os.path.exists(style_path):
|
229 |
-
pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
|
230 |
-
pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
|
231 |
-
|
232 |
-
for lora_path in lora_paths.split('|'):
|
233 |
-
adapter_name = lora_path.split('/')[-1].split('.')[0]
|
234 |
-
pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name)
|
235 |
-
pipe_concept.enable_xformers_memory_efficient_attention()
|
236 |
-
pipe_list.append(adapter_name)
|
237 |
-
return pipe_list
|
238 |
-
|
239 |
-
def build_yolo_segment_model(sam_path, device):
|
240 |
-
yolo_world = YOLOWorld(model_id="yolo_world/l")
|
241 |
-
sam = EfficientViTSamPredictor(
|
242 |
-
create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
|
243 |
-
)
|
244 |
-
return yolo_world, sam
|
245 |
-
|
246 |
-
def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
|
247 |
-
args = SLConfig.fromfile(ckpt_config_filename)
|
248 |
-
model = build_model(args)
|
249 |
-
args.device = device
|
250 |
-
|
251 |
-
checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
|
252 |
-
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
253 |
-
print("Model loaded from {} \n => {}".format(filename, log))
|
254 |
-
_ = model.eval()
|
255 |
-
return model
|
256 |
-
|
257 |
-
def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
|
258 |
-
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
|
259 |
-
ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
|
260 |
-
groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
|
261 |
-
sam = build_sam(checkpoint=sam_checkpoint)
|
262 |
-
sam.cuda()
|
263 |
-
sam_predictor = SamPredictor(sam)
|
264 |
-
return groundingdino_model, sam_predictor
|
265 |
-
|
266 |
-
def resize_and_center_crop(image, output_size=(1024, 576)):
|
267 |
-
width, height = image.size
|
268 |
-
aspect_ratio = width / height
|
269 |
-
new_height = output_size[1]
|
270 |
-
new_width = int(aspect_ratio * new_height)
|
271 |
-
|
272 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
273 |
-
|
274 |
-
if new_width < output_size[0] or new_height < output_size[1]:
|
275 |
-
padding_color = "gray"
|
276 |
-
resized_image = ImageOps.expand(resized_image,
|
277 |
-
((output_size[0] - new_width) // 2,
|
278 |
-
(output_size[1] - new_height) // 2,
|
279 |
-
(output_size[0] - new_width + 1) // 2,
|
280 |
-
(output_size[1] - new_height + 1) // 2),
|
281 |
-
fill=padding_color)
|
282 |
-
|
283 |
-
left = (resized_image.width - output_size[0]) / 2
|
284 |
-
top = (resized_image.height - output_size[1]) / 2
|
285 |
-
right = (resized_image.width + output_size[0]) / 2
|
286 |
-
bottom = (resized_image.height + output_size[1]) / 2
|
287 |
-
|
288 |
-
cropped_image = resized_image.crop((left, top, right, bottom))
|
289 |
-
|
290 |
-
return cropped_image
|
291 |
-
|
292 |
-
def main(device, segment_type):
|
293 |
-
pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp)
|
294 |
-
|
295 |
-
if segment_type == 'GroundingDINO':
|
296 |
-
detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
|
297 |
-
else:
|
298 |
-
detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)
|
299 |
-
|
300 |
-
resolution_list = ["1440*728",
|
301 |
-
"1344*768",
|
302 |
-
"1216*832",
|
303 |
-
"1152*896",
|
304 |
-
"1024*1024",
|
305 |
-
"896*1152",
|
306 |
-
"832*1216",
|
307 |
-
"768*1344",
|
308 |
-
"728*1440"]
|
309 |
-
ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344,
|
310 |
-
728 / 1440]
|
311 |
-
condition_list = ["None",
|
312 |
-
"Human pose",
|
313 |
-
"Canny Edge",
|
314 |
-
"Depth"]
|
315 |
-
|
316 |
-
depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
|
317 |
-
feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
|
318 |
-
body_model = Body(args.pose_detector_checkpoint)
|
319 |
-
openpose = OpenposeDetector(body_model)
|
320 |
-
|
321 |
-
def remove_tips():
|
322 |
-
return gr.update(visible=False)
|
323 |
-
|
324 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
325 |
-
if randomize_seed:
|
326 |
-
seed = random.randint(0, MAX_SEED)
|
327 |
-
return seed
|
328 |
-
|
329 |
-
def get_humanpose(img):
|
330 |
-
openpose_image = openpose(img)
|
331 |
-
return openpose_image
|
332 |
-
|
333 |
-
def get_cannyedge(image):
|
334 |
-
image = np.array(image)
|
335 |
-
image = cv2.Canny(image, 100, 200)
|
336 |
-
image = image[:, :, None]
|
337 |
-
image = np.concatenate([image, image, image], axis=2)
|
338 |
-
canny_image = Image.fromarray(image)
|
339 |
-
return canny_image
|
340 |
-
|
341 |
-
def get_depth(image):
|
342 |
-
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
343 |
-
with torch.no_grad(), torch.autocast("cuda"):
|
344 |
-
depth_map = depth_estimator(image).predicted_depth
|
345 |
-
|
346 |
-
depth_map = torch.nn.functional.interpolate(
|
347 |
-
depth_map.unsqueeze(1),
|
348 |
-
size=(1024, 1024),
|
349 |
-
mode="bicubic",
|
350 |
-
align_corners=False,
|
351 |
-
)
|
352 |
-
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
353 |
-
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
354 |
-
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
355 |
-
image = torch.cat([depth_map] * 3, dim=1)
|
356 |
-
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
357 |
-
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
358 |
-
return image
|
359 |
-
|
360 |
-
def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style):
|
361 |
-
try:
|
362 |
-
path1 = lorapath_man[man]
|
363 |
-
path2 = lorapath_woman[woman]
|
364 |
-
pipe_concept.unload_lora_weights()
|
365 |
-
pipe.unload_lora_weights()
|
366 |
-
pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args, pipe)
|
367 |
-
|
368 |
-
if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
|
369 |
-
styleL = True
|
370 |
-
else:
|
371 |
-
styleL = False
|
372 |
-
|
373 |
-
input_list = [prompt1]
|
374 |
-
condition_list = [condition_img1]
|
375 |
-
output_list = []
|
376 |
-
|
377 |
-
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
378 |
-
|
379 |
-
kwargs = {
|
380 |
-
'height': height,
|
381 |
-
'width': width,
|
382 |
-
}
|
383 |
-
|
384 |
-
for prompt, condition_img in zip(input_list, condition_list):
|
385 |
-
if prompt!='':
|
386 |
-
input_prompt = []
|
387 |
-
p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
|
388 |
-
if styleL:
|
389 |
-
p = styles[style] + p
|
390 |
-
input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)])
|
391 |
-
if styleL:
|
392 |
-
input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]),
|
393 |
-
(styles[style] + local_prompt2, character_woman.get(woman)[1])])
|
394 |
-
else:
|
395 |
-
input_prompt.append([(local_prompt1, character_man.get(man)[1]),
|
396 |
-
(local_prompt2, character_woman.get(woman)[1])])
|
397 |
-
|
398 |
-
if condition == 'Human pose' and condition_img is not None:
|
399 |
-
index = ratio_list.index(
|
400 |
-
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
|
401 |
-
resolution = resolution_list[index]
|
402 |
-
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
403 |
-
kwargs['height'] = height
|
404 |
-
kwargs['width'] = width
|
405 |
-
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
|
406 |
-
spatial_condition = get_humanpose(condition_img)
|
407 |
-
elif condition == 'Canny Edge' and condition_img is not None:
|
408 |
-
index = ratio_list.index(
|
409 |
-
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
|
410 |
-
resolution = resolution_list[index]
|
411 |
-
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
412 |
-
kwargs['height'] = height
|
413 |
-
kwargs['width'] = width
|
414 |
-
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
|
415 |
-
spatial_condition = get_cannyedge(condition_img)
|
416 |
-
elif condition == 'Depth' and condition_img is not None:
|
417 |
-
index = ratio_list.index(
|
418 |
-
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
|
419 |
-
resolution = resolution_list[index]
|
420 |
-
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
421 |
-
kwargs['height'] = height
|
422 |
-
kwargs['width'] = width
|
423 |
-
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
|
424 |
-
spatial_condition = get_depth(condition_img)
|
425 |
-
else:
|
426 |
-
spatial_condition = None
|
427 |
-
|
428 |
-
kwargs['spatial_condition'] = spatial_condition
|
429 |
-
controller.reset()
|
430 |
-
image = sample_image(
|
431 |
-
pipe,
|
432 |
-
input_prompt=input_prompt,
|
433 |
-
concept_models=pipe_concept,
|
434 |
-
input_neg_prompt=[negative_prompt] * len(input_prompt),
|
435 |
-
generator=torch.Generator(device).manual_seed(seed),
|
436 |
-
controller=controller,
|
437 |
-
stage=1,
|
438 |
-
lora_list=pipe_list,
|
439 |
-
styleL=styleL,
|
440 |
-
**kwargs)
|
441 |
-
|
442 |
-
controller.reset()
|
443 |
-
if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
|
444 |
-
mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15,
|
445 |
-
threshold=0.5)
|
446 |
-
else:
|
447 |
-
mask1 = None
|
448 |
-
|
449 |
-
if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
|
450 |
-
mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15,
|
451 |
-
threshold=0.5)
|
452 |
-
else:
|
453 |
-
mask2 = None
|
454 |
-
|
455 |
-
if mask1 is None and mask2 is None:
|
456 |
-
output_list.append(image[1])
|
457 |
-
else:
|
458 |
-
image = sample_image(
|
459 |
-
pipe,
|
460 |
-
input_prompt=input_prompt,
|
461 |
-
concept_models=pipe_concept,
|
462 |
-
input_neg_prompt=[negative_prompt] * len(input_prompt),
|
463 |
-
generator=torch.Generator(device).manual_seed(seed),
|
464 |
-
controller=controller,
|
465 |
-
stage=2,
|
466 |
-
region_masks=[mask1, mask2],
|
467 |
-
lora_list=pipe_list,
|
468 |
-
styleL=styleL,
|
469 |
-
**kwargs)
|
470 |
-
output_list.append(image[1])
|
471 |
-
else:
|
472 |
-
output_list.append(None)
|
473 |
-
output_list.append(spatial_condition)
|
474 |
-
return output_list
|
475 |
-
except:
|
476 |
-
print("error")
|
477 |
-
return
|
478 |
-
|
479 |
-
def get_local_value_man(input):
|
480 |
-
return character_man[input][0]
|
481 |
-
|
482 |
-
def get_local_value_woman(input):
|
483 |
-
return character_woman[input][0]
|
484 |
-
|
485 |
-
|
486 |
-
with gr.Blocks(css=css) as demo:
|
487 |
-
# description
|
488 |
-
gr.Markdown(title)
|
489 |
-
gr.Markdown(description)
|
490 |
-
|
491 |
-
with gr.Row():
|
492 |
-
gallery = gr.Image(label="Generated Images", height=512, width=512)
|
493 |
-
gen_condition = gr.Image(label="Spatial Condition", height=512, width=512)
|
494 |
-
usage_tips = gr.Markdown(label="Usage tips of OMG", value=tips, visible=False)
|
495 |
-
|
496 |
-
with gr.Row():
|
497 |
-
condition_img1 = gr.Image(label="Input an RGB image for condition", height=128, width=128)
|
498 |
-
|
499 |
-
# character choose
|
500 |
-
with gr.Row():
|
501 |
-
man = gr.Dropdown(label="Character 1 selection", choices=CHARACTER_MAN_NAMES, value="Chris Evans (identifier: Chris Evans)")
|
502 |
-
woman = gr.Dropdown(label="Character 2 selection", choices=CHARACTER_WOMAN_NAMES, value="Taylor Swift (identifier: TaylorSwift)")
|
503 |
-
resolution = gr.Dropdown(label="Image Resolution (width*height)", choices=resolution_list, value="1024*1024")
|
504 |
-
condition = gr.Dropdown(label="Input condition type", choices=condition_list, value="None")
|
505 |
-
style = gr.Dropdown(label="style", choices=STYLE_NAMES, value="None")
|
506 |
-
|
507 |
-
with gr.Row():
|
508 |
-
local_prompt1 = gr.Textbox(label="Character1_prompt",
|
509 |
-
info="Describe the Character 1, this prompt should include the identifier of character 1",
|
510 |
-
value="Close-up photo of the Chris Evans, 35mm photograph, film, professional, 4k, highly detailed.")
|
511 |
-
local_prompt2 = gr.Textbox(label="Character2_prompt",
|
512 |
-
info="Describe the Character 2, this prompt should include the identifier of character2",
|
513 |
-
value="Close-up photo of the TaylorSwift, 35mm photograph, film, professional, 4k, highly detailed.")
|
514 |
-
|
515 |
-
man.change(get_local_value_man, man, local_prompt1)
|
516 |
-
woman.change(get_local_value_woman, woman, local_prompt2)
|
517 |
-
|
518 |
-
# prompt
|
519 |
-
with gr.Column():
|
520 |
-
prompt = gr.Textbox(label="Prompt 1",
|
521 |
-
info="Give a simple prompt to describe the first image content",
|
522 |
-
placeholder="Required",
|
523 |
-
value="close-up shot, photography, a man and a woman on the street, facing the camera smiling")
|
524 |
-
|
525 |
-
|
526 |
-
with gr.Accordion(open=False, label="Advanced Options"):
|
527 |
-
seed = gr.Slider(
|
528 |
-
label="Seed",
|
529 |
-
minimum=0,
|
530 |
-
maximum=MAX_SEED,
|
531 |
-
step=1,
|
532 |
-
value=42,
|
533 |
-
)
|
534 |
-
negative_prompt = gr.Textbox(label="Negative Prompt",
|
535 |
-
placeholder="noisy, blurry, soft, deformed, ugly",
|
536 |
-
value="noisy, blurry, soft, deformed, ugly")
|
537 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
538 |
-
|
539 |
-
submit = gr.Button("Submit", variant="primary")
|
540 |
-
|
541 |
-
submit.click(
|
542 |
-
fn=remove_tips,
|
543 |
-
outputs=usage_tips,
|
544 |
-
).then(
|
545 |
-
fn=randomize_seed_fn,
|
546 |
-
inputs=[seed, randomize_seed],
|
547 |
-
outputs=seed,
|
548 |
-
queue=False,
|
549 |
-
api_name=False,
|
550 |
-
).then(
|
551 |
-
fn=generate_image,
|
552 |
-
inputs=[prompt, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style],
|
553 |
-
outputs=[gallery, gen_condition]
|
554 |
-
)
|
555 |
-
demo.launch(server_name='0.0.0.0',server_port=7861, debug=True)
|
556 |
-
|
557 |
-
def parse_args():
|
558 |
-
parser = argparse.ArgumentParser('', add_help=False)
|
559 |
-
parser.add_argument('--pretrained_sdxl_model', default='./checkpoint/stable-diffusion-xl-base-1.0', type=str)
|
560 |
-
parser.add_argument('--openpose_checkpoint', default='./checkpoint/controlnet-openpose-sdxl-1.0', type=str)
|
561 |
-
parser.add_argument('--canny_checkpoint', default='./checkpoint/controlnet-canny-sdxl-1.0', type=str)
|
562 |
-
parser.add_argument('--depth_checkpoint', default='./checkpoint/controlnet-depth-sdxl-1.0', type=str)
|
563 |
-
parser.add_argument('--efficientViT_checkpoint', default='./checkpoint/sam/xl1.pt', type=str)
|
564 |
-
parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str)
|
565 |
-
parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
|
566 |
-
parser.add_argument('--dpt_checkpoint', default='./checkpoint/dpt-hybrid-midas', type=str)
|
567 |
-
parser.add_argument('--pose_detector_checkpoint', default='./checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
|
568 |
-
parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
|
569 |
-
parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
|
570 |
-
parser.add_argument('--seed', default=22, type=int)
|
571 |
-
parser.add_argument('--suffix', default='', type=str)
|
572 |
-
parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
|
573 |
-
return parser.parse_args()
|
574 |
-
|
575 |
-
if __name__ == '__main__':
|
576 |
-
args = parse_args()
|
577 |
-
|
578 |
-
prompts = [args.prompt]*2
|
579 |
-
prompts_tmp = copy.deepcopy(prompts)
|
580 |
-
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
581 |
-
|
582 |
-
main(device, args.segment_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|