Spaces:
Runtime error
Runtime error
File size: 14,218 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import json
import socket
from datetime import datetime
from functools import partial
from typing import Callable, List, Optional, Tuple
import cv2
import numpy as np
import supervision as sv
from inference.core import logger
from inference.core.active_learning.middlewares import ActiveLearningMiddleware
from inference.core.interfaces.camera.entities import VideoFrame
from inference.core.utils.preprocess import letterbox_image
DEFAULT_ANNOTATOR = sv.BoxAnnotator()
DEFAULT_FPS_MONITOR = sv.FPSMonitor()
def display_image(image: np.ndarray) -> None:
cv2.imshow("Predictions", image)
cv2.waitKey(1)
def render_boxes(
predictions: dict,
video_frame: VideoFrame,
annotator: sv.BoxAnnotator = DEFAULT_ANNOTATOR,
display_size: Optional[Tuple[int, int]] = (1280, 720),
fps_monitor: Optional[sv.FPSMonitor] = DEFAULT_FPS_MONITOR,
display_statistics: bool = False,
on_frame_rendered: Callable[[np.ndarray], None] = display_image,
) -> None:
"""
Helper tool to render object detection predictions on top of video frame. It is designed
to be used with `InferencePipeline`, as sink for predictions. By default, it uses standard `sv.BoxAnnotator()`
to draw bounding boxes and resizes prediction to 1280x720 (keeping aspect ratio and adding black padding).
One may configure default behaviour, for instance to display latency and throughput statistics.
This sink is only partially compatible with stubs and classification models (it will not fail,
although predictions will not be displayed).
Args:
predictions (dict): Roboflow object detection predictions with Bounding Boxes
video_frame (VideoFrame): frame of video with its basic metadata emitted by `VideoSource`
annotator (sv.BoxAnnotator): Annotator used to draw Bounding Boxes - if custom object is not passed,
default is used.
display_size (Tuple[int, int]): tuple in format (width, height) to resize visualisation output
fps_monitor (Optional[sv.FPSMonitor]): FPS monitor used to monitor throughput
display_statistics (bool): Flag to decide if throughput and latency can be displayed in the result image,
if enabled, throughput will only be presented if `fps_monitor` is not None
on_frame_rendered (Callable[[np.ndarray], None]): callback to be called once frame is rendered - by default,
function will display OpenCV window.
Returns: None
Side effects: on_frame_rendered() is called against the np.ndarray produced from video frame
and predictions.
Example:
```python
from functools import partial
import cv2
from inference import InferencePipeline
from inference.core.interfaces.stream.sinks import render_boxes
output_size = (640, 480)
video_sink = cv2.VideoWriter("output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 25.0, output_size)
on_prediction = partial(render_boxes, display_size=output_size, on_frame_rendered=video_sink.write)
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=on_prediction,
)
pipeline.start()
pipeline.join()
video_sink.release()
```
In this example, `render_boxes()` is used as a sink for `InferencePipeline` predictions - making frames with
predictions displayed to be saved into video file.
"""
fps_value = None
if fps_monitor is not None:
fps_monitor.tick()
fps_value = fps_monitor()
try:
labels = [p["class"] for p in predictions["predictions"]]
detections = sv.Detections.from_roboflow(predictions)
image = annotator.annotate(
scene=video_frame.image.copy(), detections=detections, labels=labels
)
except (TypeError, KeyError):
logger.warning(
f"Used `render_boxes(...)` sink, but predictions that were provided do not match the expected format "
f"of object detection prediction that could be accepted by `supervision.Detection.from_roboflow(...)"
)
image = video_frame.image.copy()
if display_size is not None:
image = letterbox_image(image, desired_size=display_size)
if display_statistics:
image = render_statistics(
image=image, frame_timestamp=video_frame.frame_timestamp, fps=fps_value
)
on_frame_rendered(image)
def render_statistics(
image: np.ndarray, frame_timestamp: datetime, fps: Optional[float]
) -> np.ndarray:
latency = round((datetime.now() - frame_timestamp).total_seconds() * 1000, 2)
image_height = image.shape[0]
image = cv2.putText(
image,
f"LATENCY: {latency} ms",
(10, image_height - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
2,
)
if fps is not None:
fps = round(fps, 2)
image = cv2.putText(
image,
f"THROUGHPUT: {fps}",
(10, image_height - 50),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
2,
)
return image
class UDPSink:
@classmethod
def init(cls, ip_address: str, port: int) -> "UDPSink":
"""
Creates `InferencePipeline` predictions sink capable of sending model predictions over network
using UDP socket.
As an `inference` user, please use .init() method instead of constructor to instantiate objects.
Args:
ip_address (str): IP address to send predictions
port (int): Port to send predictions
Returns: Initialised object of `UDPSink` class.
"""
udp_socket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 1)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 65536)
return cls(
ip_address=ip_address,
port=port,
udp_socket=udp_socket,
)
def __init__(self, ip_address: str, port: int, udp_socket: socket.socket):
self._ip_address = ip_address
self._port = port
self._socket = udp_socket
def send_predictions(
self,
predictions: dict,
video_frame: VideoFrame,
) -> None:
"""
Method to send predictions via UDP socket. Useful in combination with `InferencePipeline` as
a sink for predictions.
Args:
predictions (dict): Roboflow object detection predictions with Bounding Boxes
video_frame (VideoFrame): frame of video with its basic metadata emitted by `VideoSource`
Returns: None
Side effects: Sends serialised `predictions` and `video_frame` metadata via the UDP socket as
JSON string. It adds key named "inference_metadata" into `predictions` dict (mutating its
state). "inference_metadata" contain id of the frame, frame grabbing timestamp and message
emission time in datetime iso format.
Example:
```python
import cv2
from inference.core.interfaces.stream.inference_pipeline import InferencePipeline
from inference.core.interfaces.stream.sinks import UDPSink
udp_sink = UDPSink.init(ip_address="127.0.0.1", port=9090)
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=udp_sink.send_predictions,
)
pipeline.start()
pipeline.join()
```
`UDPSink` used in this way will emit predictions to receiver automatically.
"""
inference_metadata = {
"frame_id": video_frame.frame_id,
"frame_decoding_time": video_frame.frame_timestamp.isoformat(),
"emission_time": datetime.now().isoformat(),
}
predictions["inference_metadata"] = inference_metadata
serialised_predictions = json.dumps(predictions).encode("utf-8")
self._socket.sendto(
serialised_predictions,
(
self._ip_address,
self._port,
),
)
def multi_sink(
predictions: dict,
video_frame: VideoFrame,
sinks: List[Callable[[dict, VideoFrame], None]],
) -> None:
"""
Helper util useful to combine multiple sinks together, while using `InferencePipeline`.
Args:
video_frame (VideoFrame): frame of video with its basic metadata emitted by `VideoSource`
predictions (dict): Roboflow object detection predictions with Bounding Boxes
sinks (List[Callable[[VideoFrame, dict], None]]): list of sinks to be used. Each will be executed
one-by-one in the order pointed in input list, all errors will be caught and reported via logger,
without re-raising.
Returns: None
Side effects: Uses all sinks in context if (video_frame, predictions) input.
Example:
```python
from functools import partial
import cv2
from inference import InferencePipeline
from inference.core.interfaces.stream.sinks import UDPSink, render_boxes
udp_sink = UDPSink(ip_address="127.0.0.1", port=9090)
on_prediction = partial(multi_sink, sinks=[udp_sink.send_predictions, render_boxes])
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=on_prediction,
)
pipeline.start()
pipeline.join()
```
As a result, predictions will both be sent via UDP socket and displayed in the screen.
"""
for sink in sinks:
try:
sink(predictions, video_frame)
except Exception as error:
logger.error(
f"Could not sent prediction with frame_id={video_frame.frame_id} to sink "
f"due to error: {error}."
)
def active_learning_sink(
predictions: dict,
video_frame: VideoFrame,
active_learning_middleware: ActiveLearningMiddleware,
model_type: str,
disable_preproc_auto_orient: bool = False,
) -> None:
active_learning_middleware.register(
inference_input=video_frame.image,
prediction=predictions,
prediction_type=model_type,
disable_preproc_auto_orient=disable_preproc_auto_orient,
)
class VideoFileSink:
@classmethod
def init(
cls,
video_file_name: str,
annotator: sv.BoxAnnotator = DEFAULT_ANNOTATOR,
display_size: Optional[Tuple[int, int]] = (1280, 720),
fps_monitor: Optional[sv.FPSMonitor] = DEFAULT_FPS_MONITOR,
display_statistics: bool = False,
output_fps: int = 25,
quiet: bool = False,
) -> "VideoFileSink":
"""
Creates `InferencePipeline` predictions sink capable of saving model predictions into video file.
As an `inference` user, please use .init() method instead of constructor to instantiate objects.
Args:
video_file_name (str): name of the video file to save predictions
render_boxes (Callable[[dict, VideoFrame], None]): callable to render predictions on top of video frame
Attributes:
on_prediction (Callable[[dict, VideoFrame], None]): callable to be used as a sink for predictions
Returns: Initialized object of `VideoFileSink` class.
Example:
```python
import cv2
from inference import InferencePipeline
from inference.core.interfaces.stream.sinks import VideoFileSink
video_sink = VideoFileSink.init(video_file_name="output.avi")
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=video_sink.on_prediction,
)
pipeline.start()
pipeline.join()
video_sink.release()
```
`VideoFileSink` used in this way will save predictions to video file automatically.
"""
return cls(
video_file_name=video_file_name,
annotator=annotator,
display_size=display_size,
fps_monitor=fps_monitor,
display_statistics=display_statistics,
output_fps=output_fps,
quiet=quiet,
)
def __init__(
self,
video_file_name: str,
annotator: sv.BoxAnnotator,
display_size: Optional[Tuple[int, int]],
fps_monitor: Optional[sv.FPSMonitor],
display_statistics: bool,
output_fps: int,
quiet: bool,
):
self._video_file_name = video_file_name
self._annotator = annotator
self._display_size = display_size
self._fps_monitor = fps_monitor
self._display_statistics = display_statistics
self._output_fps = output_fps
self._quiet = quiet
self._frame_idx = 0
self._video_writer = cv2.VideoWriter(
self._video_file_name,
cv2.VideoWriter_fourcc(*"MJPG"),
self._output_fps,
self._display_size,
)
self.on_prediction = partial(
render_boxes,
annotator=self._annotator,
display_size=self._display_size,
fps_monitor=self._fps_monitor,
display_statistics=self._display_statistics,
on_frame_rendered=self._save_predictions,
)
def _save_predictions(
self,
frame: np.ndarray,
) -> None:
""" """
self._video_writer.write(frame)
if not self._quiet:
print(f"Writing frame {self._frame_idx}", end="\r")
self._frame_idx += 1
def release(self) -> None:
"""
Releases VideoWriter object.
"""
self._video_writer.release()
|