Spaces:
Runtime error
Runtime error
File size: 8,599 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
from typing import Optional, Tuple, Union
from inference.core.cache import cache
from inference.core.devices.utils import GLOBAL_DEVICE_ID
from inference.core.entities.types import DatasetID, ModelType, TaskType, VersionID
from inference.core.env import LAMBDA, MODEL_CACHE_DIR
from inference.core.exceptions import (
MissingApiKeyError,
ModelArtefactError,
ModelNotRecognisedError,
)
from inference.core.logger import logger
from inference.core.models.base import Model
from inference.core.registries.base import ModelRegistry
from inference.core.roboflow_api import (
MODEL_TYPE_DEFAULTS,
MODEL_TYPE_KEY,
PROJECT_TASK_TYPE_KEY,
ModelEndpointType,
get_roboflow_dataset_type,
get_roboflow_model_data,
get_roboflow_workspace,
)
from inference.core.utils.file_system import dump_json, read_json
from inference.core.utils.roboflow import get_model_id_chunks
from inference.models.aliases import resolve_roboflow_model_alias
GENERIC_MODELS = {
"clip": ("embed", "clip"),
"sam": ("embed", "sam"),
"gaze": ("gaze", "l2cs"),
"doctr": ("ocr", "doctr"),
"grounding_dino": ("object-detection", "grounding-dino"),
"cogvlm": ("llm", "cogvlm"),
"yolo_world": ("object-detection", "yolo-world"),
}
STUB_VERSION_ID = "0"
CACHE_METADATA_LOCK_TIMEOUT = 1.0
class RoboflowModelRegistry(ModelRegistry):
"""A Roboflow-specific model registry which gets the model type using the model id,
then returns a model class based on the model type.
"""
def get_model(self, model_id: str, api_key: str) -> Model:
"""Returns the model class based on the given model id and API key.
Args:
model_id (str): The ID of the model to be retrieved.
api_key (str): The API key used to authenticate.
Returns:
Model: The model class corresponding to the given model ID and type.
Raises:
ModelNotRecognisedError: If the model type is not supported or found.
"""
model_type = get_model_type(model_id, api_key)
if model_type not in self.registry_dict:
raise ModelNotRecognisedError(f"Model type not supported: {model_type}")
return self.registry_dict[model_type]
def get_model_type(
model_id: str,
api_key: Optional[str] = None,
) -> Tuple[TaskType, ModelType]:
"""Retrieves the model type based on the given model ID and API key.
Args:
model_id (str): The ID of the model.
api_key (str): The API key used to authenticate.
Returns:
tuple: The project task type and the model type.
Raises:
WorkspaceLoadError: If the workspace could not be loaded or if the API key is invalid.
DatasetLoadError: If the dataset could not be loaded due to invalid ID, workspace ID or version ID.
MissingDefaultModelError: If default model is not configured and API does not provide this info
MalformedRoboflowAPIResponseError: Roboflow API responds in invalid format.
"""
model_id = resolve_roboflow_model_alias(model_id=model_id)
dataset_id, version_id = get_model_id_chunks(model_id=model_id)
if dataset_id in GENERIC_MODELS:
logger.debug(f"Loading generic model: {dataset_id}.")
return GENERIC_MODELS[dataset_id]
cached_metadata = get_model_metadata_from_cache(
dataset_id=dataset_id, version_id=version_id
)
if cached_metadata is not None:
return cached_metadata[0], cached_metadata[1]
if version_id == STUB_VERSION_ID:
if api_key is None:
raise MissingApiKeyError(
"Stub model version provided but no API key was provided. API key is required to load stub models."
)
workspace_id = get_roboflow_workspace(api_key=api_key)
project_task_type = get_roboflow_dataset_type(
api_key=api_key, workspace_id=workspace_id, dataset_id=dataset_id
)
model_type = "stub"
save_model_metadata_in_cache(
dataset_id=dataset_id,
version_id=version_id,
project_task_type=project_task_type,
model_type=model_type,
)
return project_task_type, model_type
api_data = get_roboflow_model_data(
api_key=api_key,
model_id=model_id,
endpoint_type=ModelEndpointType.ORT,
device_id=GLOBAL_DEVICE_ID,
).get("ort")
if api_data is None:
raise ModelArtefactError("Error loading model artifacts from Roboflow API.")
# some older projects do not have type field - hence defaulting
project_task_type = api_data.get("type", "object-detection")
model_type = api_data.get("modelType")
if model_type is None or model_type == "ort":
# some very old model versions do not have modelType reported - and API respond in a generic way -
# then we shall attempt using default model for given task type
model_type = MODEL_TYPE_DEFAULTS.get(project_task_type)
if model_type is None or project_task_type is None:
raise ModelArtefactError("Error loading model artifacts from Roboflow API.")
save_model_metadata_in_cache(
dataset_id=dataset_id,
version_id=version_id,
project_task_type=project_task_type,
model_type=model_type,
)
return project_task_type, model_type
def get_model_metadata_from_cache(
dataset_id: str, version_id: str
) -> Optional[Tuple[TaskType, ModelType]]:
if LAMBDA:
return _get_model_metadata_from_cache(
dataset_id=dataset_id, version_id=version_id
)
with cache.lock(
f"lock:metadata:{dataset_id}:{version_id}", expire=CACHE_METADATA_LOCK_TIMEOUT
):
return _get_model_metadata_from_cache(
dataset_id=dataset_id, version_id=version_id
)
def _get_model_metadata_from_cache(
dataset_id: str, version_id: str
) -> Optional[Tuple[TaskType, ModelType]]:
model_type_cache_path = construct_model_type_cache_path(
dataset_id=dataset_id, version_id=version_id
)
if not os.path.isfile(model_type_cache_path):
return None
try:
model_metadata = read_json(path=model_type_cache_path)
if model_metadata_content_is_invalid(content=model_metadata):
return None
return model_metadata[PROJECT_TASK_TYPE_KEY], model_metadata[MODEL_TYPE_KEY]
except ValueError as e:
logger.warning(
f"Could not load model description from cache under path: {model_type_cache_path} - decoding issue: {e}."
)
return None
def model_metadata_content_is_invalid(content: Optional[Union[list, dict]]) -> bool:
if content is None:
logger.warning("Empty model metadata file encountered in cache.")
return True
if not issubclass(type(content), dict):
logger.warning("Malformed file encountered in cache.")
return True
if PROJECT_TASK_TYPE_KEY not in content or MODEL_TYPE_KEY not in content:
logger.warning(
f"Could not find one of required keys {PROJECT_TASK_TYPE_KEY} or {MODEL_TYPE_KEY} in cache."
)
return True
return False
def save_model_metadata_in_cache(
dataset_id: DatasetID,
version_id: VersionID,
project_task_type: TaskType,
model_type: ModelType,
) -> None:
if LAMBDA:
_save_model_metadata_in_cache(
dataset_id=dataset_id,
version_id=version_id,
project_task_type=project_task_type,
model_type=model_type,
)
return None
with cache.lock(
f"lock:metadata:{dataset_id}:{version_id}", expire=CACHE_METADATA_LOCK_TIMEOUT
):
_save_model_metadata_in_cache(
dataset_id=dataset_id,
version_id=version_id,
project_task_type=project_task_type,
model_type=model_type,
)
return None
def _save_model_metadata_in_cache(
dataset_id: DatasetID,
version_id: VersionID,
project_task_type: TaskType,
model_type: ModelType,
) -> None:
model_type_cache_path = construct_model_type_cache_path(
dataset_id=dataset_id, version_id=version_id
)
metadata = {
PROJECT_TASK_TYPE_KEY: project_task_type,
MODEL_TYPE_KEY: model_type,
}
dump_json(
path=model_type_cache_path, content=metadata, allow_override=True, indent=4
)
def construct_model_type_cache_path(dataset_id: str, version_id: str) -> str:
cache_dir = os.path.join(MODEL_CACHE_DIR, dataset_id, version_id)
return os.path.join(cache_dir, "model_type.json")
|