Spaces:
Runtime error
Runtime error
from typing import Tuple | |
import numpy as np | |
from inference.core.exceptions import ModelArtefactError | |
from inference.core.models.keypoints_detection_base import ( | |
KeypointsDetectionBaseOnnxRoboflowInferenceModel, | |
) | |
from inference.core.models.utils.keypoints import superset_keypoints_count | |
class YOLOv8KeypointsDetection(KeypointsDetectionBaseOnnxRoboflowInferenceModel): | |
"""Roboflow ONNX keypoints detection model (Implements an object detection specific infer method). | |
This class is responsible for performing keypoints detection using the YOLOv8 model | |
with ONNX runtime. | |
Attributes: | |
weights_file (str): Path to the ONNX weights file. | |
Methods: | |
predict: Performs object detection on the given image using the ONNX session. | |
""" | |
def weights_file(self) -> str: | |
"""Gets the weights file for the YOLOv8 model. | |
Returns: | |
str: Path to the ONNX weights file. | |
""" | |
return "weights.onnx" | |
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, ...]: | |
"""Performs object detection on the given image using the ONNX session. | |
Args: | |
img_in (np.ndarray): Input image as a NumPy array. | |
Returns: | |
Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores. | |
""" | |
predictions = self.onnx_session.run(None, {self.input_name: img_in})[0] | |
predictions = predictions.transpose(0, 2, 1) | |
boxes = predictions[:, :, :4] | |
number_of_classes = len(self.get_class_names) | |
class_confs = predictions[:, :, 4 : 4 + number_of_classes] | |
keypoints_detections = predictions[:, :, 4 + number_of_classes :] | |
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) | |
bboxes_predictions = np.concatenate( | |
[boxes, confs, class_confs, keypoints_detections], axis=2 | |
) | |
return (bboxes_predictions,) | |
def keypoints_count(self) -> int: | |
"""Returns the number of keypoints in the model.""" | |
if self.keypoints_metadata is None: | |
raise ModelArtefactError("Keypoints metadata not available.") | |
return superset_keypoints_count(self.keypoints_metadata) | |