Spaces:
Runtime error
Runtime error
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
import io | |
import os | |
import onnx | |
import torch | |
import torch.nn as nn | |
from onnxsim import simplify as simplify_func | |
__all__ = ["export_onnx"] | |
def export_onnx( | |
model: nn.Module, export_path: str, sample_inputs: any, simplify=True, opset=11 | |
) -> None: | |
"""Export a model to a platform-specific onnx format. | |
Args: | |
model: a torch.nn.Module object. | |
export_path: export location. | |
sample_inputs: Any. | |
simplify: a flag to turn on onnx-simplifier | |
opset: int | |
""" | |
model.eval() | |
buffer = io.BytesIO() | |
with torch.no_grad(): | |
torch.onnx.export(model, sample_inputs, buffer, opset_version=opset) | |
buffer.seek(0, 0) | |
if simplify: | |
onnx_model = onnx.load_model(buffer) | |
onnx_model, success = simplify_func(onnx_model) | |
assert success | |
new_buffer = io.BytesIO() | |
onnx.save(onnx_model, new_buffer) | |
buffer = new_buffer | |
buffer.seek(0, 0) | |
if buffer.getbuffer().nbytes > 0: | |
save_dir = os.path.dirname(export_path) | |
os.makedirs(save_dir, exist_ok=True) | |
with open(export_path, "wb") as f: | |
f.write(buffer.read()) | |