File size: 13,524 Bytes
8a36c8c
 
 
 
 
 
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a36c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d70c64
8a36c8c
 
 
 
 
 
 
 
 
96fe5d9
8a36c8c
 
 
 
 
 
43dbb02
3d70c64
8a36c8c
 
43dbb02
 
8a36c8c
96fe5d9
 
8a36c8c
 
 
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a36c8c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# coding=utf-8

import io
import numpy as np
import torchaudio

import torch
import soundfile as sf
import gradio as gr
import spaces
from inspiremusic.cli.inference import InspireMusicUnified, set_env_variables
import os
import sys


def get_args():
    parser = argparse.ArgumentParser(
        description='Run inference with your model')
    parser.add_argument('-m', '--model_name', default="InspireMusic-1.5B-Long",
                        help='Model name')

    parser.add_argument('-d', '--model_dir',
                        help='Model folder path')

    parser.add_argument('-t', '--text',
                        default="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
                        help='Prompt text')

    parser.add_argument('-a', '--audio_prompt', default=None,
                        help='Prompt audio')

    parser.add_argument('-c', '--chorus', default="intro",
                        help='Chorus tag generation mode (e.g., random, verse, chorus, intro, outro)')

    parser.add_argument('--fast', type=bool, default=False,
                        help='Enable fast inference mode (without flow matching)')

    parser.add_argument('-g', '--gpu', type=int, default=0,
                        help='GPU ID for this rank, -1 for CPU')

    parser.add_argument('--task', default='text-to-music',
                        choices=['text-to-music', 'continuation', 'reconstruct', 'super_resolution'],
                        help='Inference task type: text-to-music, continuation, reconstruct, super_resolution')

    parser.add_argument('-r', '--result_dir', default="exp/inspiremusic",
                        help='Directory to save generated audio')

    parser.add_argument('-o', '--output_fn', default="output_audio",
                        help='Output file name')

    parser.add_argument('-f', '--format', type=str, default="wav",
                        choices=["wav", "mp3", "m4a", "flac"],
                        help='Format of output audio')

    parser.add_argument('--sample_rate', type=int, default=24000,
                        help='Sampling rate of input audio')

    parser.add_argument('--output_sample_rate', type=int, default=48000,
                        choices=[24000, 48000],
                        help='Sampling rate of generated output audio')

    parser.add_argument('-s', '--time_start', type=float, default=0.0,
                        help='Start time in seconds')

    parser.add_argument('-e', '--time_end', type=float, default=30.0,
                        help='End time in seconds')

    parser.add_argument('--max_audio_prompt_length', type=float, default=5.0,
                        help='Maximum audio prompt length in seconds')

    parser.add_argument('--min_generate_audio_seconds', type=float,
                        default=10.0,
                        help='Minimum generated audio length in seconds')

    parser.add_argument('--max_generate_audio_seconds', type=float,
                        default=30.0,
                        help='Maximum generated audio length in seconds')

    parser.add_argument('--fp16', type=bool, default=True,
                        help='Inference with fp16 model')

    parser.add_argument('--fade_out', type=bool, default=True,
                        help='Apply fade out effect to generated audio')

    parser.add_argument('--fade_out_duration', type=float, default=1.0,
                        help='Fade out duration in seconds')

    parser.add_argument('--trim', type=bool, default=False,
                        help='Trim the silence ending of generated audio')

    args = parser.parse_args()

    if not args.model_dir:
        args.model_dir = os.path.join("./pretrained_models", args.model_name)

    print(args)
    return args

def InspireMusic(args):
    set_env_variables()
    model = InspireMusicUnified(model_name=args.model_name,
                            model_dir=args.model_dir,
                            min_generate_audio_seconds=args.min_generate_audio_seconds,
                            max_generate_audio_seconds=args.max_generate_audio_seconds,
                            sample_rate=args.sample_rate,
                            output_sample_rate=args.output_sample_rate,
                            load_jit=True,
                            load_onnx=False,
                            fast=args.fast,
                            fp16=args.fp16,
                            gpu=args.gpu,
                            result_dir=args.result_dir)

    model.inference(task=args.task,
                text=args.text,
                audio_prompt=args.audio_prompt,
                chorus=args.chorus,
                time_start=args.time_start,
                time_end=args.time_end,
                output_fn=args.output_fn,
                max_audio_prompt_length=args.max_audio_prompt_length,
                fade_out_duration=args.fade_out_duration,
                output_format=args.format,
                fade_out_mode=args.fade_out,
                trim=args.trim)
    return os.path.join(args.result_dir, f"{args.output_fn}.{args.format}")

audio_examples = [
    ["example/inspiremusic/inspiremusic_01.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_noflow_01.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_w_cfm_intro.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_w_cfm_verse.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_w_cfm_chorus.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_w_cfm_outro.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_w_cfm_verse_ras.wav", "text-to-music"],
    ["example/inspiremusic/inspiremusic_wo_cfm_verse_topk.wav", "text-to-music"],
    ["example/ras/chorus/chorus_01.wav", "music-continuation"],
    ["example/ras/chorus/chorus_02.wav", "music-continuation"],
    ["example/ras/chorus/chorus_03.wav", "music-continuation"],
    ["example/ras/chorus/chorus_04.wav", "music-continuation"],
    ["example/ras/chorus/chorus_05.wav", "music-continuation"],
]


description = """

# InspireMusic is a music generation model with text to music generation capability, including text to music, music continuation.

## Usage
### Input text descriptions of the music, click submit, then generate music.

*Example Texts*
- `Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.`
- `The instrumental rock piece features a prominent bass guitar, delivering a pure and energetic sound.`
- `A serene blend of instrumental and light pop, featuring soothing melodies and a gentle, soulful keyboard performance.`

Recommended audio prompt duration is 5 seconds, generate audio length is below 30 seconds. To generate audio longer than 30 seconds, local deployment is recommended, github repo.

"""

html_content = """
<div>
    <h2 style="font-size: 22px;margin-left: 0px;">Music Generation Model: InspireMusic</h2>
    <p style="font-size: 18px;margin-left: 20px;">InspireMusic is a unified music, song and audio generation framework through the audio tokenization and detokenization process integrated with an autoregressive transformer. The toolkit provides both inference and training code for music generation. Featuring a unified framework, InspireMusic incorporates autoregressive Transformer and conditional flow-matching modeling (CFM), allowing for the controllable generation of music, songs, and audio with both textual and structural music conditioning, as well as neural audio tokenizers. Currently, the toolkit supports text-to-music generation and plans to expand its capabilities to include text-to-song and text-to-audio generation in the future.</p>
    <h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Input a text description of music or input through a microphone, then select the chorus and duration. The music is generated based on the input text. The chorus labels are placed in the front of the text.</p>
	<p style="font-size: 18px;margin-left: 20px;">Recommended select audio duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p>
	<h2 style="font-size: 22px;margin-left: 0px;">Repo & Demo</h2>
	<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/InspireMusic" target="_blank">Code</a> </p>
	<p style="font-size: 18px;margin-left: 20px;"><a href="https://iris2c.github.io/InspireMusic" target="_blank">Demo</a></p>
	<h2 style="font-size: 22px;margin-left: 0px;">Models</h2>
	<p style="font-size: 18px;margin-left: 20px;"><a href="https://modelscope.cn/models/iic/InspireMusic-1.5B-Long/summary" target="_blank">Modelscope Model</a>: </p>
	<p style="font-size: 18px;margin-left: 20px;"><a href="https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-Long" target="_blank">Huggingface Model</a></p>
</div>
"""

def music_generation(task, text=None, audio=None):
    args = get_args()
    args.task = task
    args.text = text if text
    args.audio_prompt = audio if audio
    generate_audio_path = InspireMusic(args)
    return generate_audio_path

demo = gr.Blocks()

t2m_demo = gr.Interface(
    fn=music_generation,
    inputs = [
        gr.Dropdown(["Text-To-Music"], value="text-to-music", multiselect=False, info="Choose a task."),
		gr.Text(label="Input Text"),
    ],
    outputs = [
        gr.Audio(label="Generated Music", type="generated audio filepath"),
    ],
    title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
    description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
                   "To try it, simply type text to generation music, or click one of the examples. "),
    article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
              "<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
    examples = [
        ["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
        ["example/ras/chorus/chorus_01.wav", "48000 Hz"],
    ],
    cache_examples = True,
)

con_demo = gr.Interface(
    fn=music_generation,
    inputs = [
        gr.Dropdown(["Music Continuation"], value="continuation", multiselect=False, info="Choose a task."),
		gr.Text(label="Input Text"),
        gr.Audio(label="Input Audio Prompt", type="audio prompt filepath"),
    ],
    outputs = [
        gr.Audio(label="Generated Music", type="generated audio filepath"),
    ],
    title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
    description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
                   "To try it, simply type text to generation music, or click one of the examples. "),
    article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
              "<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
    examples = [
        ["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
        ["example/ras/chorus/chorus_01.wav", "48000 Hz"],
    ],
    cache_examples = True,
)

con_demo = gr.Interface(
    fn=music_generation,
    inputs = [
        gr.Dropdown(["Music Continuation"], value="continuation", multiselect=False, info="Choose a task."),
		gr.Text(label="Input Text"),
        gr.Audio(label="Input Audio Prompt", type="audio prompt filepath"),
    ],
    outputs = [
        gr.Audio(label="Generated Music", type="generated audio filepath"),
    ],
    title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
    description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
                   "To try it, simply type text to generation music, or click one of the examples. "),
    article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
              "<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
    examples = [
        ["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
        ["example/ras/chorus/chorus_01.wav", "48000 Hz"],
    ],
    cache_examples = True,
)

with demo:
    gr.TabbedInterface([t2m_demo, con_demo,],
                       ["Task 1: Text-to-Music",
                        "Task 2: Music Continuation"])
	# gr.TabbedInterface([t2m_demo, con_demo, fast_demo], ["Task 1: Text-to-Music", "Task 2: Music Continuation", "Task 3: Without Flow Matching"])

demo.launch()