Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,524 Bytes
8a36c8c 96fe5d9 8a36c8c 3d70c64 8a36c8c 96fe5d9 8a36c8c 43dbb02 3d70c64 8a36c8c 43dbb02 8a36c8c 96fe5d9 8a36c8c 96fe5d9 8a36c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# coding=utf-8
import io
import numpy as np
import torchaudio
import torch
import soundfile as sf
import gradio as gr
import spaces
from inspiremusic.cli.inference import InspireMusicUnified, set_env_variables
import os
import sys
def get_args():
parser = argparse.ArgumentParser(
description='Run inference with your model')
parser.add_argument('-m', '--model_name', default="InspireMusic-1.5B-Long",
help='Model name')
parser.add_argument('-d', '--model_dir',
help='Model folder path')
parser.add_argument('-t', '--text',
default="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
help='Prompt text')
parser.add_argument('-a', '--audio_prompt', default=None,
help='Prompt audio')
parser.add_argument('-c', '--chorus', default="intro",
help='Chorus tag generation mode (e.g., random, verse, chorus, intro, outro)')
parser.add_argument('--fast', type=bool, default=False,
help='Enable fast inference mode (without flow matching)')
parser.add_argument('-g', '--gpu', type=int, default=0,
help='GPU ID for this rank, -1 for CPU')
parser.add_argument('--task', default='text-to-music',
choices=['text-to-music', 'continuation', 'reconstruct', 'super_resolution'],
help='Inference task type: text-to-music, continuation, reconstruct, super_resolution')
parser.add_argument('-r', '--result_dir', default="exp/inspiremusic",
help='Directory to save generated audio')
parser.add_argument('-o', '--output_fn', default="output_audio",
help='Output file name')
parser.add_argument('-f', '--format', type=str, default="wav",
choices=["wav", "mp3", "m4a", "flac"],
help='Format of output audio')
parser.add_argument('--sample_rate', type=int, default=24000,
help='Sampling rate of input audio')
parser.add_argument('--output_sample_rate', type=int, default=48000,
choices=[24000, 48000],
help='Sampling rate of generated output audio')
parser.add_argument('-s', '--time_start', type=float, default=0.0,
help='Start time in seconds')
parser.add_argument('-e', '--time_end', type=float, default=30.0,
help='End time in seconds')
parser.add_argument('--max_audio_prompt_length', type=float, default=5.0,
help='Maximum audio prompt length in seconds')
parser.add_argument('--min_generate_audio_seconds', type=float,
default=10.0,
help='Minimum generated audio length in seconds')
parser.add_argument('--max_generate_audio_seconds', type=float,
default=30.0,
help='Maximum generated audio length in seconds')
parser.add_argument('--fp16', type=bool, default=True,
help='Inference with fp16 model')
parser.add_argument('--fade_out', type=bool, default=True,
help='Apply fade out effect to generated audio')
parser.add_argument('--fade_out_duration', type=float, default=1.0,
help='Fade out duration in seconds')
parser.add_argument('--trim', type=bool, default=False,
help='Trim the silence ending of generated audio')
args = parser.parse_args()
if not args.model_dir:
args.model_dir = os.path.join("./pretrained_models", args.model_name)
print(args)
return args
def InspireMusic(args):
set_env_variables()
model = InspireMusicUnified(model_name=args.model_name,
model_dir=args.model_dir,
min_generate_audio_seconds=args.min_generate_audio_seconds,
max_generate_audio_seconds=args.max_generate_audio_seconds,
sample_rate=args.sample_rate,
output_sample_rate=args.output_sample_rate,
load_jit=True,
load_onnx=False,
fast=args.fast,
fp16=args.fp16,
gpu=args.gpu,
result_dir=args.result_dir)
model.inference(task=args.task,
text=args.text,
audio_prompt=args.audio_prompt,
chorus=args.chorus,
time_start=args.time_start,
time_end=args.time_end,
output_fn=args.output_fn,
max_audio_prompt_length=args.max_audio_prompt_length,
fade_out_duration=args.fade_out_duration,
output_format=args.format,
fade_out_mode=args.fade_out,
trim=args.trim)
return os.path.join(args.result_dir, f"{args.output_fn}.{args.format}")
audio_examples = [
["example/inspiremusic/inspiremusic_01.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_noflow_01.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_w_cfm_intro.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_w_cfm_verse.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_w_cfm_chorus.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_w_cfm_outro.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_w_cfm_verse_ras.wav", "text-to-music"],
["example/inspiremusic/inspiremusic_wo_cfm_verse_topk.wav", "text-to-music"],
["example/ras/chorus/chorus_01.wav", "music-continuation"],
["example/ras/chorus/chorus_02.wav", "music-continuation"],
["example/ras/chorus/chorus_03.wav", "music-continuation"],
["example/ras/chorus/chorus_04.wav", "music-continuation"],
["example/ras/chorus/chorus_05.wav", "music-continuation"],
]
description = """
# InspireMusic is a music generation model with text to music generation capability, including text to music, music continuation.
## Usage
### Input text descriptions of the music, click submit, then generate music.
*Example Texts*
- `Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.`
- `The instrumental rock piece features a prominent bass guitar, delivering a pure and energetic sound.`
- `A serene blend of instrumental and light pop, featuring soothing melodies and a gentle, soulful keyboard performance.`
Recommended audio prompt duration is 5 seconds, generate audio length is below 30 seconds. To generate audio longer than 30 seconds, local deployment is recommended, github repo.
"""
html_content = """
<div>
<h2 style="font-size: 22px;margin-left: 0px;">Music Generation Model: InspireMusic</h2>
<p style="font-size: 18px;margin-left: 20px;">InspireMusic is a unified music, song and audio generation framework through the audio tokenization and detokenization process integrated with an autoregressive transformer. The toolkit provides both inference and training code for music generation. Featuring a unified framework, InspireMusic incorporates autoregressive Transformer and conditional flow-matching modeling (CFM), allowing for the controllable generation of music, songs, and audio with both textual and structural music conditioning, as well as neural audio tokenizers. Currently, the toolkit supports text-to-music generation and plans to expand its capabilities to include text-to-song and text-to-audio generation in the future.</p>
<h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Input a text description of music or input through a microphone, then select the chorus and duration. The music is generated based on the input text. The chorus labels are placed in the front of the text.</p>
<p style="font-size: 18px;margin-left: 20px;">Recommended select audio duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p>
<h2 style="font-size: 22px;margin-left: 0px;">Repo & Demo</h2>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/InspireMusic" target="_blank">Code</a> </p>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://iris2c.github.io/InspireMusic" target="_blank">Demo</a></p>
<h2 style="font-size: 22px;margin-left: 0px;">Models</h2>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://modelscope.cn/models/iic/InspireMusic-1.5B-Long/summary" target="_blank">Modelscope Model</a>: </p>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-Long" target="_blank">Huggingface Model</a></p>
</div>
"""
def music_generation(task, text=None, audio=None):
args = get_args()
args.task = task
args.text = text if text
args.audio_prompt = audio if audio
generate_audio_path = InspireMusic(args)
return generate_audio_path
demo = gr.Blocks()
t2m_demo = gr.Interface(
fn=music_generation,
inputs = [
gr.Dropdown(["Text-To-Music"], value="text-to-music", multiselect=False, info="Choose a task."),
gr.Text(label="Input Text"),
],
outputs = [
gr.Audio(label="Generated Music", type="generated audio filepath"),
],
title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
"To try it, simply type text to generation music, or click one of the examples. "),
article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
"<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
examples = [
["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
["example/ras/chorus/chorus_01.wav", "48000 Hz"],
],
cache_examples = True,
)
con_demo = gr.Interface(
fn=music_generation,
inputs = [
gr.Dropdown(["Music Continuation"], value="continuation", multiselect=False, info="Choose a task."),
gr.Text(label="Input Text"),
gr.Audio(label="Input Audio Prompt", type="audio prompt filepath"),
],
outputs = [
gr.Audio(label="Generated Music", type="generated audio filepath"),
],
title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
"To try it, simply type text to generation music, or click one of the examples. "),
article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
"<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
examples = [
["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
["example/ras/chorus/chorus_01.wav", "48000 Hz"],
],
cache_examples = True,
)
con_demo = gr.Interface(
fn=music_generation,
inputs = [
gr.Dropdown(["Music Continuation"], value="continuation", multiselect=False, info="Choose a task."),
gr.Text(label="Input Text"),
gr.Audio(label="Input Audio Prompt", type="audio prompt filepath"),
],
outputs = [
gr.Audio(label="Generated Music", type="generated audio filepath"),
],
title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
"To try it, simply type text to generation music, or click one of the examples. "),
article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
"<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
examples = [
["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
["example/ras/chorus/chorus_01.wav", "48000 Hz"],
],
cache_examples = True,
)
with demo:
gr.TabbedInterface([t2m_demo, con_demo,],
["Task 1: Text-to-Music",
"Task 2: Music Continuation"])
# gr.TabbedInterface([t2m_demo, con_demo, fast_demo], ["Task 1: Text-to-Music", "Task 2: Music Continuation", "Task 3: Without Flow Matching"])
demo.launch()
|