File size: 7,116 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import argparse
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import torch
from torch.utils.data import DataLoader
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from tqdm import tqdm
from inspiremusic.cli.model import InspireMusicModel
from inspiremusic.dataset.dataset import Dataset
from inspiremusic.utils.common import MUSIC_STRUCTURE_LABELS

def get_args():
    parser = argparse.ArgumentParser(description='inference only with flow model')
    parser.add_argument('--config', required=True, help='config file')
    parser.add_argument('--prompt_data', required=True, help='prompt data file')
    parser.add_argument('--flow_model', required=True, help='flow model file')
    parser.add_argument('--llm_model', default=None,required=False, help='llm model file')

    parser.add_argument('--music_tokenizer', required=True, help='music tokenizer model file')
    parser.add_argument('--wavtokenizer', required=True, help='wavtokenizer model file')
    parser.add_argument('--chorus', default="random",required=False, help='chorus tag generation mode, eg. random, verse, chorus, intro.')
    parser.add_argument('--sample_rate', type=int, default=48000, required=False,
                        help='sampling rate of generated audio')
    parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0, required=False,
                        help='the minimum generated audio length in seconds')
    parser.add_argument('--max_generate_audio_seconds', type=float, default=30.0, required=False,
                        help='the maximum generated audio length in seconds')
    parser.add_argument('--gpu',
                        type=int,
                        default=-1,
                        help='gpu id for this rank, -1 for cpu')
    parser.add_argument('--result_dir', required=True, help='asr result file')
    args = parser.parse_args()
    print(args)
    return args

def main():
    args = get_args()
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    # Init inspiremusic models from configs
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    device = torch.device('cuda' if use_cuda else 'cpu')
    with open(args.config, 'r') as f:
        configs = load_hyperpyyaml(f)

    model = InspireMusicModel(None, configs['flow'], configs['hift'], configs['wavtokenizer'])
    model.load(args.llm_model, args.flow_model, args.music_tokenizer, args.wavtokenizer)

    if args.llm_model is None:
        model.llm = None
    else:
        model.llm = model.llm.to(torch.float32)

    if args.flow_model is None:
        model.flow = None

    test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=True, partition=False)
    test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)

    del configs
    os.makedirs(args.result_dir, exist_ok=True)
    fn = os.path.join(args.result_dir, 'wav.scp')
    f = open(fn, 'w')
    with torch.no_grad():
        for _, batch in tqdm(enumerate(test_data_loader)):
            utts = batch["utts"]
            assert len(utts) == 1, "inference mode only support batchsize 1"

            if "semantic_token" in batch:                      
                token  = batch["semantic_token"].to(device)  
                token_len  = batch["semantic_token_len"].to(device)   
            else:
                if audio_token is None:  
                    token = None
                    token_len = None
                else:                                                            
                    token = audio_token.view(audio_token.size(0),-1,4)[:,:,0]
                    token_len  = audio_token_len / 4 

            text_token = batch["text_token"].to(device)
            text_token_len = batch["text_token_len"].to(device)
            text = batch["text"]

            if "time_start" not in batch.keys():
                batch["time_start"] = torch.randint(0, args.min_generate_audio_seconds, (1,)).to(torch.float64)
            if "time_end" not in batch.keys():
                batch["time_end"] = torch.randint(args.min_generate_audio_seconds, args.max_generate_audio_seconds, (1,)).to(torch.float64)
            elif (batch["time_end"].numpy()[0] - batch["time_start"].numpy()[0]) < args.min_generate_audio_seconds:
                batch["time_end"] = torch.randint(int(batch["time_start"].numpy()[0] + args.min_generate_audio_seconds), int(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds), (1,)).to(torch.float64)

            if "chorus" not in batch.keys():
                batch["chorus"] = torch.randint(1, 5, (1,))
            
            if args.chorus == "random":
                batch["chorus"] = torch.randint(1, 5, (1,))
            elif args.chorus == "intro":
                batch["chorus"] = torch.Tensor([0])
            elif "verse" in args.chorus:
                batch["chorus"] = torch.Tensor([1])
            elif args.chorus == "chorus":
                batch["chorus"] = torch.Tensor([2])
            elif args.chorus == "outro":
                batch["chorus"] = torch.Tensor([4])

            time_start = batch["time_start"].to(device)
            time_end = batch["time_end"].to(device)
            chorus = batch["chorus"].to(torch.int)

            text_prompt = f"<|{batch['time_start'].numpy()[0]}|><|{MUSIC_STRUCTURE_LABELS[chorus.numpy()[0]]}|><|{batch['text'][0]}|><|{batch['time_end'].numpy()[0]}|>"
            chorus = chorus.to(device)

            model_input = {"text": text, "audio_token": token, "audio_token_len": token_len,
                                "text_token": text_token, "text_token_len": text_token_len,
                                "embeddings": [time_start, time_end, chorus], "raw_text":text}
                             
            music_audios = []
            for model_output in model.inference(**model_input):
                music_audios.append(model_output['music_audio'])

            music_key = utts[0]
            music_fn = os.path.join(args.result_dir, '{}.wav'.format(music_key))
            torchaudio.save(music_fn, music_audios[0], sample_rate=args.sample_rate)
            f.write('{} {}\n'.format(music_key, music_fn))
            f.flush()
    f.close()
    logging.info('Result wav.scp saved in {}'.format(fn))

if __name__ == '__main__':
    main()