File size: 12,324 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import argparse
import logging

logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import torch
from torch.utils.data import DataLoader
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from tqdm import tqdm
from inspiremusic.cli.model import InspireMusicModel
from inspiremusic.dataset.dataset import Dataset
import time
from inspiremusic.utils.audio_utils import trim_audio, fade_out, process_audio
from inspiremusic.utils.common import MUSIC_STRUCTURE_LABELS

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def get_args():
    parser = argparse.ArgumentParser(description='inference only with your model')
    parser.add_argument('--config', required=True, help='config file')
    parser.add_argument('--prompt_data', required=True, help='prompt data file')
    parser.add_argument('--flow_model', default=None, required=False, help='flow model file')
    parser.add_argument('--llm_model', default=None,required=False, help='flow model file')
    parser.add_argument('--music_tokenizer', required=True, help='music tokenizer model file')
    parser.add_argument('--wavtokenizer', required=True, help='wavtokenizer model file')
    parser.add_argument('--chorus', default="random",required=False, help='chorus tag generation mode, eg. random, verse, chorus, intro.')
    parser.add_argument('--fast', action='store_true', required=False, help='True: fast inference mode, without flow matching for fast inference. False: normal inference mode, with flow matching for high quality.')
    parser.add_argument('--fp16', default=True, type=bool, required=False, help='inference with fp16 model')
    parser.add_argument('--fade_out', default=True, type=bool, required=False, help='add fade out effect to generated audio')
    parser.add_argument('--fade_out_duration', default=1.0, type=float, required=False, help='fade out duration in seconds')
    parser.add_argument('--trim', default=False, type=bool, required=False, help='trim the silence ending of generated audio')
    parser.add_argument('--format', type=str, default="wav", required=False,
                        choices=["wav", "mp3", "m4a", "flac"],
                        help='sampling rate of input audio')
    parser.add_argument('--sample_rate', type=int, default=24000, required=False,
                        help='sampling rate of input audio')
    parser.add_argument('--output_sample_rate', type=int, default=48000, required=False, choices=[24000, 48000],
                        help='sampling rate of generated output audio')
    parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0, required=False,
                        help='the minimum generated audio length in seconds')
    parser.add_argument('--max_generate_audio_seconds', type=float, default=30.0, required=False,
                        help='the maximum generated audio length in seconds')
    parser.add_argument('--gpu',
                        type=int,
                        default=0,
                        help='gpu id for this rank, -1 for cpu')
    parser.add_argument('--task',
                        default='text-to-music',
                        choices=['text-to-music', 'continuation', "reconstruct", "super_resolution"],
                        help='choose inference task type. text-to-music: text-to-music task. continuation: music continuation task. reconstruct: reconstruction of original music. super_resolution: convert original 24kHz music into 48kHz music.')
    parser.add_argument('--result_dir', required=True, help='asr result file')
    args = parser.parse_args()
    print(args)
    return args


def main():
	args = get_args()
	logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s')
	os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

	if args.fast:
		args.output_sample_rate = 24000

	min_generate_audio_length = int(args.output_sample_rate * args.min_generate_audio_seconds)
	max_generate_audio_length = int(args.output_sample_rate * args.max_generate_audio_seconds)
	assert args.min_generate_audio_seconds <= args.max_generate_audio_seconds

	# Init inspiremusic models from configs
	use_cuda = args.gpu >= 0 and torch.cuda.is_available()
	device = torch.device('cuda' if use_cuda else 'cpu')
	with open(args.config, 'r') as f:
		configs = load_hyperpyyaml(f)

	model = InspireMusicModel(configs['llm'], configs['flow'], configs['hift'], configs['wavtokenizer'], args.fast, args.fp16)

	model.load(args.llm_model, args.flow_model, args.music_tokenizer, args.wavtokenizer)

	if args.llm_model is None:
		model.llm = None
	else:
		model.llm = model.llm.to(torch.float32)

	if args.flow_model is None:
		model.flow = None

	test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=True, partition=False)
	test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)

	del configs
	os.makedirs(args.result_dir, exist_ok=True)
	fn = os.path.join(args.result_dir, 'wav.scp')
	f = open(fn, 'w')
	caption_fn = os.path.join(args.result_dir, 'captions.txt')
	caption_f = open(caption_fn, 'w')

	with torch.no_grad():
		for _, batch in tqdm(enumerate(test_data_loader)):
			utts = batch["utts"]

			assert len(utts) == 1, "inference mode only support batchsize 1"
			text_token = batch["text_token"].to(device)
			text_token_len = batch["text_token_len"].to(device)

			if "time_start" not in batch.keys():
				batch["time_start"] = torch.randint(0, args.min_generate_audio_seconds, (1,)).to(torch.float64)

			if batch["time_start"].numpy()[0] > 300:
				batch["time_start"] = torch.Tensor([0]).to(torch.float64)

			if "time_end" not in batch.keys():
				batch["time_end"] = torch.randint(int(batch["time_start"].numpy()[0] + args.min_generate_audio_seconds), int(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds), (1,)).to(torch.float64)
			else:
				if (batch["time_end"].numpy()[0] - batch["time_start"].numpy()[0]) < args.min_generate_audio_seconds:
					batch["time_end"] = torch.randint(int(batch["time_start"].numpy()[0] + args.min_generate_audio_seconds), int(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds), (1,)).to(torch.float64)
				elif (batch["time_end"].numpy()[0] - batch["time_start"].numpy()[0]) > args.max_generate_audio_seconds:
					batch["time_end"] = torch.Tensor([(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds)]).to(torch.float64)

			if "chorus" not in batch.keys():
				batch["chorus"] = torch.randint(1, 5, (1,))

			if args.chorus == "random":
				batch["chorus"] = torch.randint(1, 5, (1,))
			elif args.chorus == "intro":
				batch["chorus"] = torch.Tensor([0])
			elif "verse" in args.chorus:
				batch["chorus"] = torch.Tensor([1])
			elif args.chorus == "chorus":
				batch["chorus"] = torch.Tensor([2])
			elif args.chorus == "outro":
				batch["chorus"] = torch.Tensor([4])
			else:
				batch["chorus"] = batch["chorus"]

			time_start = batch["time_start"].to(device)
			time_end = batch["time_end"].to(device)
			chorus = batch["chorus"].to(torch.int)

			text_prompt = f"<|{batch['time_start'].numpy()[0]}|><|{MUSIC_STRUCTURE_LABELS[chorus.numpy()[0]]}|><|{batch['text'][0]}|><|{batch['time_end'].numpy()[0]}|>"
			chorus = chorus.to(device)

			if batch["acoustic_token"] is None:
				audio_token = None
				audio_token_len = None
			else:
				audio_token = batch["acoustic_token"].to(device)
				audio_token_len = batch["acoustic_token_len"].to(device)

			text = batch["text"]

			if "semantic_token" in batch:
				token = batch["semantic_token"].to(device)
				token_len = batch["semantic_token_len"].to(device)
			else:
				if audio_token is None:
					token = None
					token_len = None
				else:
					token = audio_token.view(audio_token.size(0), -1, 4)[:, :, 0]
					token_len = audio_token_len / 4

			if args.task in ['text-to-music', 'continuation']:
				# text to music, music continuation
				model_input = {"text": text, "audio_token": token,
							   "audio_token_len": token_len,
							   "text_token": text_token,
							   "text_token_len": text_token_len,
							   "embeddings": [time_start, time_end, chorus],
							   "raw_text": text,
							   "sample_rate": args.output_sample_rate,
							   "duration_to_gen": args.max_generate_audio_seconds,
							   "task": args.task}
			elif args.task in ['reconstruct', 'super_resolution']:
				# audio reconstruction, audio super resolution
				model_input = {"text": text, "audio_token": audio_token,
							   "audio_token_len": audio_token_len,
							   "text_token": text_token,
							   "text_token_len": text_token_len,
							   "embeddings": [time_start, time_end, chorus],
							   "raw_text": text,
							   "sample_rate": args.output_sample_rate,
							   "duration_to_gen": args.max_generate_audio_seconds,
							   "task": args.task}
			else:
				# zero-shot
				model_input = {'text'                       : text,
							   'text_len'                   : text_token_len,
							   'prompt_text'                : text_token,
							   'prompt_text_len'            : text_token_len,
							   'llm_prompt_audio_token'     : token,
							   'llm_prompt_audio_token_len' : token_len,
							   'flow_prompt_audio_token'    : audio_token,
							   'flow_prompt_audio_token_len': audio_token_len,
							   'prompt_audio_feat'          : audio_feat,
							   'prompt_audio_feat_len'      : audio_feat_len,
							   "embeddings"                 : [time_start,
															   time_end,
															   chorus]}

			music_key = utts[0]
			music_audios = []
			music_fn = os.path.join(args.result_dir, f'{music_key}.{args.format}')
			bench_start = time.time()

			for model_output in model.inference(**model_input):
				music_audios.append(model_output['music_audio'])
			bench_end = time.time()
			if args.trim:
				music_audio = trim_audio(music_audios[0],
										 sample_rate=args.output_sample_rate,
										 threshold=0.05,
										 min_silence_duration=0.8)
			else:
				music_audio = music_audios[0]
			if music_audio.shape[0] != 0:
				if music_audio.shape[1] > max_generate_audio_length:
					music_audio = music_audio[:, :max_generate_audio_length]
				if music_audio.shape[1] >= min_generate_audio_length:
					try:
						if args.fade_out:
							music_audio = fade_out(music_audio, args.output_sample_rate, args.fade_out_duration)
						music_audio = music_audio.repeat(2, 1)
						if args.format in ["wav", "flac"]:
							torchaudio.save(music_fn, music_audio, sample_rate=args.output_sample_rate, encoding="PCM_S", bits_per_sample=24)
						elif args.format in ["mp3", "m4a"]:
							torchaudio.backend.sox_io_backend.save(filepath=music_fn, src=music_audio, sample_rate=args.output_sample_rate, format=args.format)
						else:
							logging.info(f"Format is not supported. Please choose from wav, mp3, m4a, flac.")
					except Exception as e:
						logging.info(f"Error saving file: {e}")
						raise

					audio_duration = music_audio.shape[1] / args.output_sample_rate
					rtf = (bench_end - bench_start) / audio_duration
					logging.info(f"processing time: {int(bench_end - bench_start)}s, audio length: {int(audio_duration)}s, rtf: {rtf}, text prompt: {text_prompt}")
					f.write('{} {}\n'.format(music_key, music_fn))
					f.flush()
					caption_f.write('{}\t{}\n'.format(music_key, text_prompt))
					caption_f.flush()
				else:
					logging.info(f"Generate audio length {music_audio.shape[1]} is shorter than min_generate_audio_length.")
			else:
				logging.info(f"Generate audio is empty, dim = {music_audio.shape[0]}.")
	f.close()
	logging.info('Result wav.scp saved in {}'.format(fn))


if __name__ == '__main__':
	main()