File size: 7,765 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import argparse
import datetime
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from copy import deepcopy
import torch
import torch.distributed as dist
import deepspeed
import glob
import os
from hyperpyyaml import load_hyperpyyaml
from torch.cuda.amp import GradScaler, autocast
from torch.distributed.elastic.multiprocessing.errors import record
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
from inspiremusic.utils.executor import Executor
from inspiremusic.utils.train_utils import (
    init_distributed,
    init_dataset_and_dataloader,
    init_optimizer_and_scheduler,
    init_summarywriter, save_model,
    wrap_cuda_model, check_modify_and_save_config)


def get_args():
    parser = argparse.ArgumentParser(description='training your network')
    parser.add_argument('--train_engine',
                        default='torch_ddp',
                        choices=['torch_ddp', 'deepspeed'],
                        help='Engine for paralleled training')
    parser.add_argument('--model', required=True, help='model which will be trained')
    parser.add_argument('--config', required=True, help='config file')
    parser.add_argument('--train_data', required=True, help='train data file')
    parser.add_argument('--cv_data', required=True, help='cv data file')
    parser.add_argument('--checkpoint', help='checkpoint model')
    parser.add_argument('--model_dir', required=True, help='save model dir')
    parser.add_argument('--tensorboard_dir',
                        default='tensorboard',
                        help='tensorboard log dir')
    parser.add_argument('--ddp.dist_backend',
                        dest='dist_backend',
                        default='nccl',
                        choices=['nccl', 'gloo'],
                        help='distributed backend')
    parser.add_argument('--num_workers',
                        default=0,
                        type=int,
                        help='number of subprocess workers for reading')
    parser.add_argument('--prefetch',
                        default=100,
                        type=int,
                        help='prefetch number')
    parser.add_argument('--pin_memory',
                        action='store_true',
                        default=True,
                        help='Use pinned memory buffers used for reading')
    parser.add_argument('--deepspeed.save_states',
                        dest='save_states',
                        default='model_only',
                        choices=['model_only', 'model+optimizer'],
                        help='save model/optimizer states')
    parser.add_argument('--timeout',
                        default=30,
                        type=int,
                        help='timeout (in seconds) of inspiremusic_join.')
    parser.add_argument('--fp16',
                          action='store_true',
                          default=False,      
                          help='Enable fp16 mixed precision training')
    parser.add_argument('--lora',
                          action='store_true',
                          default=False,      
                          help='Enable LoRA training')
    parser.add_argument('--lora_rank',
                          default=4,
                          type=int,
                          help='LoRA rank')   
    parser.add_argument('--lora_alpha',     
                          default=16,
                          type=int,
                          help='LoRA alpha')  
    parser.add_argument('--lora_dropout',   
                          default=0.1,
                          type=float,
                          help='LoRA dropout rate')
    parser.add_argument('--lora_target_modules',
                          nargs='+',
                          default=["k_proj","v_proj"],
                          help='Target modules to apply LoRA (e.g., ["q_proj", "v_proj"])')

    parser = deepspeed.add_config_arguments(parser)
    args = parser.parse_args()
    return args


@record
def main():
    args = get_args()
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')

    override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
    with open(args.config, 'r') as f:
        configs = load_hyperpyyaml(f, overrides=override_dict)
    configs['train_conf'].update(vars(args))

    # Init env for ddp
    init_distributed(args)

    # Get dataset & dataloader
    train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
        init_dataset_and_dataloader(args, configs)

    # Do some sanity checks and save config to arsg.model_dir
    configs = check_modify_and_save_config(args, configs)

    # Tensorboard summary
    writer = init_summarywriter(args)

    # load checkpoint
    model = configs[args.model]

    if args.checkpoint is not None:
        model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
    else:
        # Find and load the latest checkpoint
        checkpoint_files = glob.glob(os.path.join(args.model_dir, '*.pt'))

        if checkpoint_files:
            latest_checkpoint = max(checkpoint_files, key=os.path.getctime)
            logging.info(f"Loaded latest checkpoint from {latest_checkpoint}")

            model.load_state_dict(torch.load(latest_checkpoint, map_location='cpu'))

    if args.lora:
        logging.info("Applying LoRA to the model...")
        if not args.lora_target_modules:
            raise ValueError("No target modules specified for LoRA. Please provide --lora_target_modules.")
        lora_config = LoraConfig(
            task_type="CAUSAL_LM",  # Change to appropriate task type
            inference_mode=False,
            r=args.lora_rank,
            lora_alpha=args.lora_alpha,
            lora_dropout=args.lora_dropout,
            target_modules=args.lora_target_modules
        )
        model.llm.model = get_peft_model(model.llm.model, lora_config)
        # Optionally freeze the base model
    else:
        logging.info("LoRA is not enabled. Training the full model.")

    # Dispatch model from cpu to gpu
    model = wrap_cuda_model(args, model)

    # Get optimizer & scheduler
    model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)

    # Initialize AMP for torch_ddp if fp16 is enabled
    scaler = None
    if args.fp16:
        scaler = GradScaler()
        logging.info("Initialized AMP GradScaler for mixed precision training.")

    # Save init checkpoints
    info_dict = deepcopy(configs['train_conf'])

    # Get executor
    executor = Executor()

    # Start training loop
    for epoch in range(info_dict['max_epoch']):
        executor.epoch = epoch
        train_dataset.set_epoch(epoch)
        dist.barrier()
        group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
        executor.train_one_epoch(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join, scaler=scaler)
        dist.destroy_process_group(group_join)

if __name__ == '__main__':
    main()