Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,765 Bytes
96fe5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import datetime
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from copy import deepcopy
import torch
import torch.distributed as dist
import deepspeed
import glob
import os
from hyperpyyaml import load_hyperpyyaml
from torch.cuda.amp import GradScaler, autocast
from torch.distributed.elastic.multiprocessing.errors import record
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
from inspiremusic.utils.executor import Executor
from inspiremusic.utils.train_utils import (
init_distributed,
init_dataset_and_dataloader,
init_optimizer_and_scheduler,
init_summarywriter, save_model,
wrap_cuda_model, check_modify_and_save_config)
def get_args():
parser = argparse.ArgumentParser(description='training your network')
parser.add_argument('--train_engine',
default='torch_ddp',
choices=['torch_ddp', 'deepspeed'],
help='Engine for paralleled training')
parser.add_argument('--model', required=True, help='model which will be trained')
parser.add_argument('--config', required=True, help='config file')
parser.add_argument('--train_data', required=True, help='train data file')
parser.add_argument('--cv_data', required=True, help='cv data file')
parser.add_argument('--checkpoint', help='checkpoint model')
parser.add_argument('--model_dir', required=True, help='save model dir')
parser.add_argument('--tensorboard_dir',
default='tensorboard',
help='tensorboard log dir')
parser.add_argument('--ddp.dist_backend',
dest='dist_backend',
default='nccl',
choices=['nccl', 'gloo'],
help='distributed backend')
parser.add_argument('--num_workers',
default=0,
type=int,
help='number of subprocess workers for reading')
parser.add_argument('--prefetch',
default=100,
type=int,
help='prefetch number')
parser.add_argument('--pin_memory',
action='store_true',
default=True,
help='Use pinned memory buffers used for reading')
parser.add_argument('--deepspeed.save_states',
dest='save_states',
default='model_only',
choices=['model_only', 'model+optimizer'],
help='save model/optimizer states')
parser.add_argument('--timeout',
default=30,
type=int,
help='timeout (in seconds) of inspiremusic_join.')
parser.add_argument('--fp16',
action='store_true',
default=False,
help='Enable fp16 mixed precision training')
parser.add_argument('--lora',
action='store_true',
default=False,
help='Enable LoRA training')
parser.add_argument('--lora_rank',
default=4,
type=int,
help='LoRA rank')
parser.add_argument('--lora_alpha',
default=16,
type=int,
help='LoRA alpha')
parser.add_argument('--lora_dropout',
default=0.1,
type=float,
help='LoRA dropout rate')
parser.add_argument('--lora_target_modules',
nargs='+',
default=["k_proj","v_proj"],
help='Target modules to apply LoRA (e.g., ["q_proj", "v_proj"])')
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
return args
@record
def main():
args = get_args()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
with open(args.config, 'r') as f:
configs = load_hyperpyyaml(f, overrides=override_dict)
configs['train_conf'].update(vars(args))
# Init env for ddp
init_distributed(args)
# Get dataset & dataloader
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
init_dataset_and_dataloader(args, configs)
# Do some sanity checks and save config to arsg.model_dir
configs = check_modify_and_save_config(args, configs)
# Tensorboard summary
writer = init_summarywriter(args)
# load checkpoint
model = configs[args.model]
if args.checkpoint is not None:
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
else:
# Find and load the latest checkpoint
checkpoint_files = glob.glob(os.path.join(args.model_dir, '*.pt'))
if checkpoint_files:
latest_checkpoint = max(checkpoint_files, key=os.path.getctime)
logging.info(f"Loaded latest checkpoint from {latest_checkpoint}")
model.load_state_dict(torch.load(latest_checkpoint, map_location='cpu'))
if args.lora:
logging.info("Applying LoRA to the model...")
if not args.lora_target_modules:
raise ValueError("No target modules specified for LoRA. Please provide --lora_target_modules.")
lora_config = LoraConfig(
task_type="CAUSAL_LM", # Change to appropriate task type
inference_mode=False,
r=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=args.lora_target_modules
)
model.llm.model = get_peft_model(model.llm.model, lora_config)
# Optionally freeze the base model
else:
logging.info("LoRA is not enabled. Training the full model.")
# Dispatch model from cpu to gpu
model = wrap_cuda_model(args, model)
# Get optimizer & scheduler
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
# Initialize AMP for torch_ddp if fp16 is enabled
scaler = None
if args.fp16:
scaler = GradScaler()
logging.info("Initialized AMP GradScaler for mixed precision training.")
# Save init checkpoints
info_dict = deepcopy(configs['train_conf'])
# Get executor
executor = Executor()
# Start training loop
for epoch in range(info_dict['max_epoch']):
executor.epoch = epoch
train_dataset.set_epoch(epoch)
dist.barrier()
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
executor.train_one_epoch(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join, scaler=scaler)
dist.destroy_process_group(group_join)
if __name__ == '__main__':
main()
|