File size: 14,766 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import openl3
import librosa
import numpy as np
from scipy import linalg
import glob
from tqdm import tqdm
import os
import soxr
import pyloudnorm as pyln


def calculate_embd_statistics(embd_lst):
    if isinstance(embd_lst, list):
        embd_lst = np.array(embd_lst)
    mu = np.mean(embd_lst, axis=0)
    sigma = np.cov(embd_lst, rowvar=False)
    return mu, sigma


def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
    """
    Adapted from: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py
    Adapted from: https://github.com/gudgud96/frechet-audio-distance/blob/main/frechet_audio_distance/fad.py
    
    Numpy implementation of the Frechet Distance.
    
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

    Params:
    -- mu1: Embedding's mean statistics for generated samples.
    -- mu2: Embedding's mean statistics for reference samples.
    -- sigma1: Covariance matrix over embeddings for generated samples.
    -- sigma2: Covariance matrix over embeddings for reference samples.
    Returns:
    --  Fréchet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, \
        'Training and test mean vectors have different lengths'
    assert sigma1.shape == sigma2.shape, \
        'Training and test covariances have different dimensions'

    diff = mu1 - mu2

    # product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
            'adding %s to diagonal of cov estimates') % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1)
            + np.trace(sigma2) - 2 * tr_covmean)


def extract_embeddings(directory_path, channels, samplingrate, content_type, openl3_hop_size, batch_size=16):
    """
    Given a list of files, compute their embeddings in batches.

    If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512.

    If channels == 2: mono audio is "faked" to stereo by copying the mono channel.
    Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings.

    Params:
    -- directory_path: path where the generated audio files are available.
    -- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings.
    -- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz.
    -- content_type: 'music' or 'env' to select a content type specific openl3 model.
    -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec. 
    -- batch_size: number of audio files to process in each batch.
    Returns:
    -- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance()
    """
    _, extension = os.path.splitext(directory_path)
    if extension.lower() == ".scp":
        wav_files = []
        with open(directory_path, "r") as f:
            for line in f:
                sec = line.strip().split(" ")
                wav_files.append(sec[1])
    else:
        wav_files = glob.glob(directory_path)
    if len(wav_files) == 0:
        raise ValueError('No files with this extension in this path!')
    model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512)
    
    first = True
    for i in tqdm(range(0, len(wav_files), batch_size)):
        batch_files = wav_files[i:i+batch_size]
        batch_audio_l = []
        batch_audio_r = []
        batch_sr = []
        
        for file in batch_files:
            audio, sr = librosa.load(file, sr=None, mono=False)
            audio = audio.T
            audio = pyln.normalize.peak(audio, -1.0)            
            if audio.shape[0] < sr: 
                print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr)

            # resample to the desired evaluation bandwidth
            audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr

            # mono embeddings are stored in batch_audio_l (R channel not used)
            if channels == 1:
                batch_audio_l.append(audio)

            elif channels == 2:
                if audio.ndim == 1:
                    # if mono, "fake" stereo by copying mono channel to L and R
                    batch_audio_l.append(audio)
                    batch_audio_r.append(audio)
                elif audio.ndim == 2:
                    # if it's stereo separate channels for openl3
                    batch_audio_l.append(audio[:,0])
                    batch_audio_r.append(audio[:,1])

            batch_sr.append(samplingrate)

        # extracting mono embeddings (dim=512) or the L channel for stereo embeddings
        emb, _ = openl3.get_audio_embedding(batch_audio_l, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size)

        # format mono embedding
        if channels == 1:
            emb = np.concatenate(emb,axis=0)
        
        # extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings
        elif channels == 2:
            # extract the missing R channel
            emb_r, _ = openl3.get_audio_embedding(batch_audio_r, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size)
            emb = [np.concatenate([l, r], axis=1) for l, r in zip(emb, emb_r)]
            emb = np.concatenate(emb, axis=0)

        # concatenate embeddings
        if first:
            embeddings = emb
            first = False
        else:
            embeddings = np.concatenate([embeddings, emb], axis=0)
    
    # return as a list of embeddings: [np.array[], ...]
    return [e for e in embeddings]


def extract_embeddings_nobatching(directory_path, channels, samplingrate, content_type, openl3_hop_size):
    """
    Given a list of files, compute their embeddings one by one.

    If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512.

    If channels == 2: mono audio is "faked" to stereo by copying the mono channel.
    Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings.

    Params:
    -- directory_path: path where the generated audio files are available.
    -- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings.
    -- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz.
    -- content_type: 'music' or 'env' to select a content type specific openl3 model.
    -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec. 
    Returns:
    -- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance()
    """
    _, extension = os.path.splitext(directory_path)
    if extension.lower() == ".scp":
        wav_files = []
        with open(directory_path, "r") as f:
            for line in f:
                sec = line.strip().split(" ")
                wav_files.append(sec[1])
    else:
        wav_files = glob.glob(directory_path)
    if len(wav_files) == 0:
        raise ValueError('No files with this extension in this path!')    
    model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512)

    first = True
    for file in tqdm(wav_files):
        audio, sr = librosa.load(file, sr=None)
        audio = pyln.normalize.peak(audio, -1.0)
        if audio.shape[0] < sr: 
            print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr)

        # resample to the desired evaluation bandwidth
        audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr

        # extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings
        if channels == 2:
            if audio.ndim == 1:
                audio_l3, sr_l3 = audio, samplingrate
            elif audio.ndim == 2:
                # if it's stereo separate channels for openl3
                audio_l3 = [audio[:,0], audio[:,1]]
                sr_l3 = [samplingrate, samplingrate]
            emb, _ = openl3.get_audio_embedding(audio_l3, sr_l3, model=model, verbose=False, hop_size=openl3_hop_size)
            if audio.ndim == 1:
                # if mono audio, "fake" stereo by concatenating mono embedding as L and R embeddings
                emb = np.concatenate([emb, emb],axis=1)
            elif audio.ndim == 2:
                emb = np.concatenate(emb,axis=1)

        # or extracting mono embeddings (dim=512)
        elif channels == 1: 
            emb, _ = openl3.get_audio_embedding(audio, samplingrate, model=model, verbose=False, hop_size=openl3_hop_size)

        # concatenate embeddings
        if first:
            embeddings = emb
            first = False
        else:
            embeddings = np.concatenate([embeddings, emb], axis=0)
    
    # return as a list of embeddings: [np.array[], ...]
    return [e for e in embeddings]


def openl3_fd(channels, samplingrate, content_type, openl3_hop_size, eval_path, 
              eval_files_extension='.wav', ref_path=None, ref_files_extension='.wav', load_ref_embeddings=None, batching=False):
    """
    Compute the Fréchet Distance between files in eval_path and ref_path.
    
    Fréchet distance computed on top of openl3 embeddings.

    GPU-based computation.

    Extracting the embeddings is timeconsuming. After being computed once, we store them.
    We store pre-computed reference embedding statistics in load/openl3_fd/ 
    To load those and save computation, just set the path in load_ref_embeddings.
    If load_ref_embeddings is set, ref_path is not required.

    Params:
    -- channels: 1 (mono), or 2 (stereo) to get the Fréchet Distance over mono or stereo embeddings.
    -- samplingrate: max bandwith at wich we evaluate the given signals. Up to 48kHz.
    -- content_type: 'music' or 'env' to select a content type for openl3.
    -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
    -- eval_path: path where the generated audio files to evaluate are available.
    -- eval_files_extenstion: files extension (default .wav) in eval_path.
    -- ref_path: path where the reference audio files are available. (instead of load_ref_embeddings)
    -- ref_files_extension: files extension (default .wav) in ref_path.
    -- load_ref_embeddings: path to the reference embedding statistics. (inestead of ref_path)
    -- batching: set batch size (with an int) or set to False (default False).
    Returns:
    -- Fréchet distance.
    """

    if not os.path.isdir(eval_path):        
        raise ValueError('eval_path does not exist')

    if load_ref_embeddings:
        if not os.path.exists(load_ref_embeddings):
            raise ValueError('load_ref_embeddings does not exist')
        print('[LOADING REFERENCE EMBEDDINGS] ', load_ref_embeddings)
        loaded = np.load(load_ref_embeddings)
        mu_ref = loaded['mu_ref']
        sigma_ref = loaded['sigma_ref']

    else:
        if ref_path:
            if not os.path.isdir(ref_path):
                if not os.path.isfile(ref_path):
                    raise ValueError("ref_path does not exist")
            if os.path.isfile(ref_path):
                path = ref_path
            else:
                path = os.path.join(ref_path, '*'+ref_files_extension)
            print('[EXTRACTING REFERENCE EMBEDDINGS] ', path)
            if batching:
                ref_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching)
            else:
                ref_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size)            
            mu_ref, sigma_ref = calculate_embd_statistics(ref_embeddings)

            # store statistics to load later on
            if not os.path.exists('load/openl3_fd'):
                os.makedirs('load/openl3_fd/')
            save_ref_embeddings_path = (
                'load/openl3_fd/' +
                path.replace('/', '_') +
                '__channels' + str(channels) +
                '__' + str(samplingrate) +
                '__openl3' + str(content_type) +
                '__openl3hopsize' + str(openl3_hop_size) +
                '__batch' + str(batching) +
                '.npz'
            )                
            np.savez(save_ref_embeddings_path, mu_ref=mu_ref, sigma_ref=sigma_ref)
            print('[REFERENCE EMBEDDINGS][SAVED] ', save_ref_embeddings_path)

        else:
            raise ValueError('Must specify ref_path or load_ref_embeddings')

    path = os.path.join(eval_path, '*'+eval_files_extension)
    print('[EXTRACTING EVALUATION EMBEDDINGS] ', path)
    if batching:
        eval_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching)
    else:
        eval_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size)    
    mu_eval, sigma_eval = calculate_embd_statistics(eval_embeddings)

    fd = calculate_frechet_distance(mu_eval, sigma_eval, mu_ref, sigma_ref)
    if load_ref_embeddings:
        print('[FRéCHET DISTANCE] ', eval_path, load_ref_embeddings, fd)
    else:
        print('[FRéCHET DISTANCE] ', eval_path, ref_path, fd)

    return fd