Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,766 Bytes
96fe5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import openl3
import librosa
import numpy as np
from scipy import linalg
import glob
from tqdm import tqdm
import os
import soxr
import pyloudnorm as pyln
def calculate_embd_statistics(embd_lst):
if isinstance(embd_lst, list):
embd_lst = np.array(embd_lst)
mu = np.mean(embd_lst, axis=0)
sigma = np.cov(embd_lst, rowvar=False)
return mu, sigma
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""
Adapted from: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py
Adapted from: https://github.com/gudgud96/frechet-audio-distance/blob/main/frechet_audio_distance/fad.py
Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Params:
-- mu1: Embedding's mean statistics for generated samples.
-- mu2: Embedding's mean statistics for reference samples.
-- sigma1: Covariance matrix over embeddings for generated samples.
-- sigma2: Covariance matrix over embeddings for reference samples.
Returns:
-- Fréchet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def extract_embeddings(directory_path, channels, samplingrate, content_type, openl3_hop_size, batch_size=16):
"""
Given a list of files, compute their embeddings in batches.
If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512.
If channels == 2: mono audio is "faked" to stereo by copying the mono channel.
Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings.
Params:
-- directory_path: path where the generated audio files are available.
-- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings.
-- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz.
-- content_type: 'music' or 'env' to select a content type specific openl3 model.
-- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
-- batch_size: number of audio files to process in each batch.
Returns:
-- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance()
"""
_, extension = os.path.splitext(directory_path)
if extension.lower() == ".scp":
wav_files = []
with open(directory_path, "r") as f:
for line in f:
sec = line.strip().split(" ")
wav_files.append(sec[1])
else:
wav_files = glob.glob(directory_path)
if len(wav_files) == 0:
raise ValueError('No files with this extension in this path!')
model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512)
first = True
for i in tqdm(range(0, len(wav_files), batch_size)):
batch_files = wav_files[i:i+batch_size]
batch_audio_l = []
batch_audio_r = []
batch_sr = []
for file in batch_files:
audio, sr = librosa.load(file, sr=None, mono=False)
audio = audio.T
audio = pyln.normalize.peak(audio, -1.0)
if audio.shape[0] < sr:
print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr)
# resample to the desired evaluation bandwidth
audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr
# mono embeddings are stored in batch_audio_l (R channel not used)
if channels == 1:
batch_audio_l.append(audio)
elif channels == 2:
if audio.ndim == 1:
# if mono, "fake" stereo by copying mono channel to L and R
batch_audio_l.append(audio)
batch_audio_r.append(audio)
elif audio.ndim == 2:
# if it's stereo separate channels for openl3
batch_audio_l.append(audio[:,0])
batch_audio_r.append(audio[:,1])
batch_sr.append(samplingrate)
# extracting mono embeddings (dim=512) or the L channel for stereo embeddings
emb, _ = openl3.get_audio_embedding(batch_audio_l, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size)
# format mono embedding
if channels == 1:
emb = np.concatenate(emb,axis=0)
# extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings
elif channels == 2:
# extract the missing R channel
emb_r, _ = openl3.get_audio_embedding(batch_audio_r, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size)
emb = [np.concatenate([l, r], axis=1) for l, r in zip(emb, emb_r)]
emb = np.concatenate(emb, axis=0)
# concatenate embeddings
if first:
embeddings = emb
first = False
else:
embeddings = np.concatenate([embeddings, emb], axis=0)
# return as a list of embeddings: [np.array[], ...]
return [e for e in embeddings]
def extract_embeddings_nobatching(directory_path, channels, samplingrate, content_type, openl3_hop_size):
"""
Given a list of files, compute their embeddings one by one.
If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512.
If channels == 2: mono audio is "faked" to stereo by copying the mono channel.
Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings.
Params:
-- directory_path: path where the generated audio files are available.
-- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings.
-- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz.
-- content_type: 'music' or 'env' to select a content type specific openl3 model.
-- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
Returns:
-- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance()
"""
_, extension = os.path.splitext(directory_path)
if extension.lower() == ".scp":
wav_files = []
with open(directory_path, "r") as f:
for line in f:
sec = line.strip().split(" ")
wav_files.append(sec[1])
else:
wav_files = glob.glob(directory_path)
if len(wav_files) == 0:
raise ValueError('No files with this extension in this path!')
model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512)
first = True
for file in tqdm(wav_files):
audio, sr = librosa.load(file, sr=None)
audio = pyln.normalize.peak(audio, -1.0)
if audio.shape[0] < sr:
print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr)
# resample to the desired evaluation bandwidth
audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr
# extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings
if channels == 2:
if audio.ndim == 1:
audio_l3, sr_l3 = audio, samplingrate
elif audio.ndim == 2:
# if it's stereo separate channels for openl3
audio_l3 = [audio[:,0], audio[:,1]]
sr_l3 = [samplingrate, samplingrate]
emb, _ = openl3.get_audio_embedding(audio_l3, sr_l3, model=model, verbose=False, hop_size=openl3_hop_size)
if audio.ndim == 1:
# if mono audio, "fake" stereo by concatenating mono embedding as L and R embeddings
emb = np.concatenate([emb, emb],axis=1)
elif audio.ndim == 2:
emb = np.concatenate(emb,axis=1)
# or extracting mono embeddings (dim=512)
elif channels == 1:
emb, _ = openl3.get_audio_embedding(audio, samplingrate, model=model, verbose=False, hop_size=openl3_hop_size)
# concatenate embeddings
if first:
embeddings = emb
first = False
else:
embeddings = np.concatenate([embeddings, emb], axis=0)
# return as a list of embeddings: [np.array[], ...]
return [e for e in embeddings]
def openl3_fd(channels, samplingrate, content_type, openl3_hop_size, eval_path,
eval_files_extension='.wav', ref_path=None, ref_files_extension='.wav', load_ref_embeddings=None, batching=False):
"""
Compute the Fréchet Distance between files in eval_path and ref_path.
Fréchet distance computed on top of openl3 embeddings.
GPU-based computation.
Extracting the embeddings is timeconsuming. After being computed once, we store them.
We store pre-computed reference embedding statistics in load/openl3_fd/
To load those and save computation, just set the path in load_ref_embeddings.
If load_ref_embeddings is set, ref_path is not required.
Params:
-- channels: 1 (mono), or 2 (stereo) to get the Fréchet Distance over mono or stereo embeddings.
-- samplingrate: max bandwith at wich we evaluate the given signals. Up to 48kHz.
-- content_type: 'music' or 'env' to select a content type for openl3.
-- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
-- eval_path: path where the generated audio files to evaluate are available.
-- eval_files_extenstion: files extension (default .wav) in eval_path.
-- ref_path: path where the reference audio files are available. (instead of load_ref_embeddings)
-- ref_files_extension: files extension (default .wav) in ref_path.
-- load_ref_embeddings: path to the reference embedding statistics. (inestead of ref_path)
-- batching: set batch size (with an int) or set to False (default False).
Returns:
-- Fréchet distance.
"""
if not os.path.isdir(eval_path):
raise ValueError('eval_path does not exist')
if load_ref_embeddings:
if not os.path.exists(load_ref_embeddings):
raise ValueError('load_ref_embeddings does not exist')
print('[LOADING REFERENCE EMBEDDINGS] ', load_ref_embeddings)
loaded = np.load(load_ref_embeddings)
mu_ref = loaded['mu_ref']
sigma_ref = loaded['sigma_ref']
else:
if ref_path:
if not os.path.isdir(ref_path):
if not os.path.isfile(ref_path):
raise ValueError("ref_path does not exist")
if os.path.isfile(ref_path):
path = ref_path
else:
path = os.path.join(ref_path, '*'+ref_files_extension)
print('[EXTRACTING REFERENCE EMBEDDINGS] ', path)
if batching:
ref_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching)
else:
ref_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size)
mu_ref, sigma_ref = calculate_embd_statistics(ref_embeddings)
# store statistics to load later on
if not os.path.exists('load/openl3_fd'):
os.makedirs('load/openl3_fd/')
save_ref_embeddings_path = (
'load/openl3_fd/' +
path.replace('/', '_') +
'__channels' + str(channels) +
'__' + str(samplingrate) +
'__openl3' + str(content_type) +
'__openl3hopsize' + str(openl3_hop_size) +
'__batch' + str(batching) +
'.npz'
)
np.savez(save_ref_embeddings_path, mu_ref=mu_ref, sigma_ref=sigma_ref)
print('[REFERENCE EMBEDDINGS][SAVED] ', save_ref_embeddings_path)
else:
raise ValueError('Must specify ref_path or load_ref_embeddings')
path = os.path.join(eval_path, '*'+eval_files_extension)
print('[EXTRACTING EVALUATION EMBEDDINGS] ', path)
if batching:
eval_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching)
else:
eval_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size)
mu_eval, sigma_eval = calculate_embd_statistics(eval_embeddings)
fd = calculate_frechet_distance(mu_eval, sigma_eval, mu_ref, sigma_ref)
if load_ref_embeddings:
print('[FRéCHET DISTANCE] ', eval_path, load_ref_embeddings, fd)
else:
print('[FRéCHET DISTANCE] ', eval_path, ref_path, fd)
return fd |