File size: 6,016 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08af8
 
e5d1aa9
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c478e0
 
 
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch.nn as nn
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from inspiremusic.utils.mask import make_pad_mask
from inspiremusic.utils.hinter import hint_once

class QwenEncoder(nn.Module):
    def __init__(
            self,
            input_size: int,
            pretrain_path: str = "Qwen/Qwen2.0-0.5B",
            trainable: bool = False,
            do_fusion_emb: bool = False,
            fusion_drop_rate: float = 0.0,
    ):
        super(QwenEncoder, self).__init__()
        self.input_size = input_size
        self.trainable = trainable
        self.model = AutoModelForCausalLM.from_pretrained(pretrain_path, device_map="cpu")
        self._output_size = self.model.config.hidden_size
        self.do_fusion_emb = do_fusion_emb
        self.hidden_norm = torch.nn.LayerNorm(self._output_size)
        self.fusion_dropout = nn.Dropout(fusion_drop_rate)
        if do_fusion_emb:
            self.fusion_layer = torch.nn.Linear(self._output_size * 2, self._output_size)
            self.emb_norm = torch.nn.LayerNorm(self._output_size)
            self.fusion_norm = torch.nn.LayerNorm(self._output_size)
            from inspiremusic.transformer.activation import Swish
            self.fusion_act = Swish(self)

        if not self.trainable:
            self.model.eval()

    def output_size(self) -> int:
        return self._output_size

    def forward(
            self,
            input_ids: torch.Tensor,
            ilens: torch.Tensor,
    ):
        device = input_ids.device
        input_ids = torch.clamp(input_ids, min=0, max=None)
        input_masks = (~make_pad_mask(ilens)).to(device).long()
        if not self.trainable:
            with torch.no_grad():
                model_outputs = self.model(
                    input_ids=input_ids,
                    attention_mask=input_masks,
                    output_hidden_states=True
                )
        else:
            model_outputs = self.model(
                input_ids=input_ids,
                attention_mask=input_masks,
                output_hidden_states=True
            )
        outs = model_outputs.hidden_states[-1]
        outs = self.hidden_norm(outs)
        if self.do_fusion_emb:
            hint_once("fuse embedding and LM outputs", "fuse_emb")
            outs = self.fusion_dropout(self.fusion_act(outs))
            emb = model_outputs.hidden_states[0]
            emb = self.fusion_dropout(self.fusion_act(self.emb_norm(emb)))
            outs = self.fusion_layer(
                torch.cat([outs, emb], dim=-1)
            )
            outs = self.fusion_act(self.fusion_norm(outs))

        return outs, ilens


class QwenEmbeddingEncoder(nn.Module):
    def __init__(
            self,
            input_size: int,
            pretrain_path: str = "Qwen/Qwen2.0-0.5B",
    ):
        super(QwenEmbeddingEncoder, self).__init__()
        self.input_size = input_size
        from transformers import Qwen2ForCausalLM
        # self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path, device_map="cpu", attn_implementation="flash_attention_2")
        self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path,
                                                      device_map="cpu")
        self._output_size = self.model.config.hidden_size

    def output_size(self) -> int:
        return self._output_size

    def forward(
            self,
            input_embeds: torch.Tensor,
            ilens: torch.Tensor,
    ):
        input_masks = (~make_pad_mask(ilens)).to(input_embeds.device).long()

        outs = self.model(
            inputs_embeds=input_embeds,
            attention_mask=input_masks,
            output_hidden_states=True,
            return_dict=True,
        )

        return outs.hidden_states[-1], input_masks

    def forward_one_step(self, xs, masks, cache=None):

        outs = self.model(
            inputs_embeds=xs,
            attention_mask=masks,
            output_hidden_states=True,
            return_dict=True,
            use_cache=True,
            past_key_values=cache,
        )
        xs = outs.hidden_states[-1]
        new_cache = outs.past_key_values

        return xs, masks, new_cache


class QwenInputOnlyEncoder(nn.Module):
    def __init__(
            self,
            input_size: int,
            pretrain_path: str = "Qwen/Qwen2.0-0.5B",
    ):
        super(QwenInputOnlyEncoder, self).__init__()
        self.input_size = input_size
        from transformers import Qwen2ForCausalLM
        # model = Qwen2ForCausalLM.from_pretrained(pretrain_path, device_map="cpu", attn_implementation="flash_attention_2")
        model = Qwen2ForCausalLM.from_pretrained(pretrain_path,
                                                 device_map="cpu")
        self.embed = model.model.embed_tokens
        for p in self.embed.parameters():
            p.requires_grad = False
            # set text embedding to non-trainable

        # self.post_embed = model.model.rotary_emb
        self._output_size = model.config.hidden_size

    def output_size(self) -> int:
        return self._output_size

    def forward(
            self,
            input_ids: torch.Tensor,
            ilens: torch.Tensor,
    ):
        input_masks = (~make_pad_mask(ilens)).to(input_ids.device).long()

        outs = self.embed(input_ids)

        return outs, input_masks