Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,792 Bytes
96fe5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import math
import numpy as np
import pytorch_lightning as pl
import torch
import torchaudio
import transformers
import yaml
from decoder.discriminator_dac import DACDiscriminator
from decoder.discriminators import MultiPeriodDiscriminator, MultiResolutionDiscriminator
from decoder.feature_extractors import FeatureExtractor
from decoder.heads import FourierHead
from decoder.helpers import plot_spectrogram_to_numpy
from decoder.loss import DiscriminatorLoss, GeneratorLoss, FeatureMatchingLoss, MelSpecReconstructionLoss, DACGANLoss
from decoder.models import Backbone
from decoder.modules import safe_log
from decoder.pretrained_model import instantiate_class
class VocosExp(pl.LightningModule):
# noinspection PyUnusedLocal
def __init__(
self,
feature_extractor: FeatureExtractor,
backbone: Backbone,
head: FourierHead,
resume_config: str,
resume_model: str,
sample_rate: int = 24000,
initial_learning_rate: float = 2e-4,
num_warmup_steps: int = 0,
mel_loss_coeff: float = 45,
mrd_loss_coeff: float = 1.0,
pretrain_mel_steps: int = 0,
decay_mel_coeff: bool = False,
evaluate_utmos: bool = False,
evaluate_pesq: bool = False,
evaluate_periodicty: bool = False,
resume: bool = False,
):
"""
Args:
feature_extractor (FeatureExtractor): An instance of FeatureExtractor to extract features from audio signals.
backbone (Backbone): An instance of Backbone model.
head (FourierHead): An instance of Fourier head to generate spectral coefficients and reconstruct a waveform.
sample_rate (int): Sampling rate of the audio signals.
initial_learning_rate (float): Initial learning rate for the optimizer.
num_warmup_steps (int): Number of steps for the warmup phase of learning rate scheduler. Default is 0.
mel_loss_coeff (float, optional): Coefficient for Mel-spectrogram loss in the loss function. Default is 45.
mrd_loss_coeff (float, optional): Coefficient for Multi Resolution Discriminator loss. Default is 1.0.
pretrain_mel_steps (int, optional): Number of steps to pre-train the model without the GAN objective. Default is 0.
decay_mel_coeff (bool, optional): If True, the Mel-spectrogram loss coefficient is decayed during training. Default is False.
evaluate_utmos (bool, optional): If True, UTMOS scores are computed for each validation run.
evaluate_pesq (bool, optional): If True, PESQ scores are computed for each validation run.
evaluate_periodicty (bool, optional): If True, periodicity scores are computed for each validation run.
"""
super().__init__()
self.save_hyperparameters(ignore=["feature_extractor", "backbone", "head"])
self.feature_extractor = feature_extractor
self.backbone = backbone
self.head = head
self.resume_config = resume_config
self.resume_model = resume_model
self.resume = resume
self.multiperioddisc = MultiPeriodDiscriminator()
self.multiresddisc = MultiResolutionDiscriminator()
self.dac = DACDiscriminator()
self.dacdiscriminator = DACGANLoss(self.dac)
self.disc_loss = DiscriminatorLoss()
self.gen_loss = GeneratorLoss()
self.feat_matching_loss = FeatureMatchingLoss()
self.melspec_loss = MelSpecReconstructionLoss(sample_rate=sample_rate)
self.train_discriminator = False
self.base_mel_coeff = self.mel_loss_coeff = mel_loss_coeff
def configure_optimizers(self):
disc_params = [
{"params": self.multiperioddisc.parameters()},
{"params": self.multiresddisc.parameters()},
{"params": self.dac.parameters()},
]
gen_params = [
{"params": self.feature_extractor.parameters()},
{"params": self.backbone.parameters()},
{"params": self.head.parameters()},
]
opt_disc = torch.optim.AdamW(disc_params, lr=self.hparams.initial_learning_rate)
opt_gen = torch.optim.AdamW(gen_params, lr=self.hparams.initial_learning_rate)
max_steps = self.trainer.max_steps // 2 # Max steps per optimizer
scheduler_disc = transformers.get_cosine_schedule_with_warmup(
opt_disc, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps,
)
scheduler_gen = transformers.get_cosine_schedule_with_warmup(
opt_gen, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps,
)
return (
[opt_disc, opt_gen],
[{"scheduler": scheduler_disc, "interval": "step"}, {"scheduler": scheduler_gen, "interval": "step"}],
)
def forward(self, audio_input, **kwargs):
features, _, commit_loss = self.feature_extractor(audio_input, **kwargs)
# print('1111', self.feature_extractor.state_dict()['encodec.decoder.model.3.convtr.convtr.weight_g'])
x = self.backbone(features, **kwargs)
audio_output = self.head(x)
return audio_output, commit_loss
def training_step(self, batch, batch_idx, optimizer_idx, **kwargs):
audio_input = batch
# train discriminator
if optimizer_idx == 0 and self.train_discriminator:
with torch.no_grad():
audio_hat, _ = self(audio_input, **kwargs)
loss_dac=self.dacdiscriminator.discriminator_loss(audio_hat.unsqueeze(1),audio_input.unsqueeze(1))
real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(y=audio_input, y_hat=audio_hat, **kwargs,)
real_score_mrd, gen_score_mrd, _, _ = self.multiresddisc(y=audio_input, y_hat=audio_hat, **kwargs,)
loss_mp, loss_mp_real, _ = self.disc_loss(
disc_real_outputs=real_score_mp, disc_generated_outputs=gen_score_mp
)
loss_mrd, loss_mrd_real, _ = self.disc_loss(
disc_real_outputs=real_score_mrd, disc_generated_outputs=gen_score_mrd
)
loss_mp /= len(loss_mp_real)
loss_mrd /= len(loss_mrd_real)
loss = loss_mp + self.hparams.mrd_loss_coeff * loss_mrd + loss_dac
self.log("discriminator/total", loss, prog_bar=True)
self.log("discriminator/multi_period_loss", loss_mp)
self.log("discriminator/multi_res_loss", loss_mrd)
self.log("discriminator/dac", loss_dac)
return loss
# train generator
if optimizer_idx == 1:
audio_hat, commit_loss = self(audio_input, **kwargs)
if self.train_discriminator:
loss_dac_1,loss_dac_2 = self.dacdiscriminator.generator_loss(audio_hat.unsqueeze(1),audio_input.unsqueeze(1))
_, gen_score_mp, fmap_rs_mp, fmap_gs_mp = self.multiperioddisc(
y=audio_input, y_hat=audio_hat, **kwargs,
)
_, gen_score_mrd, fmap_rs_mrd, fmap_gs_mrd = self.multiresddisc(
y=audio_input, y_hat=audio_hat, **kwargs,
)
loss_gen_mp, list_loss_gen_mp = self.gen_loss(disc_outputs=gen_score_mp)
loss_gen_mrd, list_loss_gen_mrd = self.gen_loss(disc_outputs=gen_score_mrd)
loss_gen_mp = loss_gen_mp / len(list_loss_gen_mp)
loss_gen_mrd = loss_gen_mrd / len(list_loss_gen_mrd)
loss_fm_mp = self.feat_matching_loss(fmap_r=fmap_rs_mp, fmap_g=fmap_gs_mp) / len(fmap_rs_mp)
loss_fm_mrd = self.feat_matching_loss(fmap_r=fmap_rs_mrd, fmap_g=fmap_gs_mrd) / len(fmap_rs_mrd)
self.log("generator/multi_period_loss", loss_gen_mp)
self.log("generator/multi_res_loss", loss_gen_mrd)
self.log("generator/feature_matching_mp", loss_fm_mp)
self.log("generator/feature_matching_mrd", loss_fm_mrd)
self.log("generator/loss_dac_1", loss_dac_1)
self.log("generator/loss_dac_2", loss_dac_2)
else:
loss_gen_mp = loss_gen_mrd = loss_fm_mp = loss_fm_mrd = 0
mel_loss = self.melspec_loss(audio_hat, audio_input)
loss = (
loss_gen_mp
+ self.hparams.mrd_loss_coeff * loss_gen_mrd
+ loss_fm_mp
+ self.hparams.mrd_loss_coeff * loss_fm_mrd
+ self.mel_loss_coeff * mel_loss
+ 1000 * commit_loss
+ loss_dac_1
+ loss_dac_2
)
self.log("generator/total_loss", loss, prog_bar=True)
self.log("mel_loss_coeff", self.mel_loss_coeff)
self.log("generator/mel_loss", mel_loss)
self.log("commit_loss", commit_loss)
if self.global_step % 1000 == 0 and self.global_rank == 0:
self.logger.experiment.add_audio(
"train/audio_in", audio_input[0].data.cpu(), self.global_step, self.hparams.sample_rate
)
self.logger.experiment.add_audio(
"train/audio_pred", audio_hat[0].data.cpu(), self.global_step, self.hparams.sample_rate
)
with torch.no_grad():
mel = safe_log(self.melspec_loss.mel_spec(audio_input[0]))
mel_hat = safe_log(self.melspec_loss.mel_spec(audio_hat[0]))
self.logger.experiment.add_image(
"train/mel_target",
plot_spectrogram_to_numpy(mel.data.cpu().numpy()),
self.global_step,
dataformats="HWC",
)
self.logger.experiment.add_image(
"train/mel_pred",
plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()),
self.global_step,
dataformats="HWC",
)
return loss
def on_validation_epoch_start(self):
if self.hparams.evaluate_utmos:
from metrics.UTMOS import UTMOSScore
if not hasattr(self, "utmos_model"):
self.utmos_model = UTMOSScore(device=self.device)
def validation_step(self, batch, batch_idx, **kwargs):
audio_input = batch
audio_hat, commit_loss = self(audio_input, **kwargs)
audio_16_khz = torchaudio.functional.resample(audio_input, orig_freq=self.hparams.sample_rate, new_freq=16000)
audio_hat_16khz = torchaudio.functional.resample(audio_hat, orig_freq=self.hparams.sample_rate, new_freq=16000)
if self.hparams.evaluate_periodicty:
from metrics.periodicity import calculate_periodicity_metrics
periodicity_loss, pitch_loss, f1_score = calculate_periodicity_metrics(audio_16_khz, audio_hat_16khz)
else:
periodicity_loss = pitch_loss = f1_score = 0
if self.hparams.evaluate_utmos:
utmos_score = self.utmos_model.score(audio_hat_16khz.unsqueeze(1)).mean()
else:
utmos_score = torch.zeros(1, device=self.device)
if self.hparams.evaluate_pesq:
from pesq import pesq
pesq_score = 0
for ref, deg in zip(audio_16_khz.cpu().numpy(), audio_hat_16khz.cpu().numpy()):
pesq_score += pesq(16000, ref, deg, "wb", on_error=1)
pesq_score /= len(audio_16_khz)
pesq_score = torch.tensor(pesq_score)
else:
pesq_score = torch.zeros(1, device=self.device)
mel_loss = self.melspec_loss(audio_hat.unsqueeze(1), audio_input.unsqueeze(1))
total_loss = mel_loss + (5 - utmos_score) + (5 - pesq_score) + 1000 * commit_loss
return {
"val_loss": total_loss,
"mel_loss": mel_loss,
"utmos_score": utmos_score,
"pesq_score": pesq_score,
"periodicity_loss": periodicity_loss,
"pitch_loss": pitch_loss,
"f1_score": f1_score,
"audio_input": audio_input[0],
"audio_pred": audio_hat[0],
}
def validation_epoch_end(self, outputs):
if self.global_rank == 0:
*_, audio_in, audio_pred = outputs[0].values()
self.logger.experiment.add_audio(
"val_in", audio_in.data.cpu().numpy(), self.global_step, self.hparams.sample_rate
)
self.logger.experiment.add_audio(
"val_pred", audio_pred.data.cpu().numpy(), self.global_step, self.hparams.sample_rate
)
mel_target = safe_log(self.melspec_loss.mel_spec(audio_in))
mel_hat = safe_log(self.melspec_loss.mel_spec(audio_pred))
self.logger.experiment.add_image(
"val_mel_target",
plot_spectrogram_to_numpy(mel_target.data.cpu().numpy()),
self.global_step,
dataformats="HWC",
)
self.logger.experiment.add_image(
"val_mel_hat",
plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()),
self.global_step,
dataformats="HWC",
)
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
mel_loss = torch.stack([x["mel_loss"] for x in outputs]).mean()
utmos_score = torch.stack([x["utmos_score"] for x in outputs]).mean()
pesq_score = torch.stack([x["pesq_score"] for x in outputs]).mean()
periodicity_loss = np.array([x["periodicity_loss"] for x in outputs]).mean()
pitch_loss = np.array([x["pitch_loss"] for x in outputs]).mean()
f1_score = np.array([x["f1_score"] for x in outputs]).mean()
self.log("val_loss", avg_loss, sync_dist=True)
self.log("val/mel_loss", mel_loss, sync_dist=True)
self.log("val/utmos_score", utmos_score, sync_dist=True)
self.log("val/pesq_score", pesq_score, sync_dist=True)
self.log("val/periodicity_loss", periodicity_loss, sync_dist=True)
self.log("val/pitch_loss", pitch_loss, sync_dist=True)
self.log("val/f1_score", f1_score, sync_dist=True)
@property
def global_step(self):
"""
Override global_step so that it returns the total number of batches processed
"""
return self.trainer.fit_loop.epoch_loop.total_batch_idx
def on_train_batch_start(self, *args):
if self.global_step >= self.hparams.pretrain_mel_steps:
self.train_discriminator = True
else:
self.train_discriminator = False
def on_train_batch_end(self, *args):
def mel_loss_coeff_decay(current_step, num_cycles=0.5):
max_steps = self.trainer.max_steps // 2
if current_step < self.hparams.num_warmup_steps:
return 1.0
progress = float(current_step - self.hparams.num_warmup_steps) / float(
max(1, max_steps - self.hparams.num_warmup_steps)
)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
if self.hparams.decay_mel_coeff:
self.mel_loss_coeff = self.base_mel_coeff * mel_loss_coeff_decay(self.global_step + 1)
class WavTokenizer(VocosExp):
"""
WavTokenizer is a subclass of VocosExp that overrides the parent experiment to function as a conditional GAN.
It manages an additional `bandwidth_id` attribute, which denotes a learnable embedding corresponding to
a specific bandwidth value of EnCodec. During training, a random bandwidth_id is generated for each step,
while during validation, a fixed bandwidth_id is used.
"""
def __init__(
self,
feature_extractor: FeatureExtractor,
backbone: Backbone,
head: FourierHead,
resume_config: str,
resume_model: str,
sample_rate: int = 24000,
initial_learning_rate: float = 2e-4,
num_warmup_steps: int = 0,
mel_loss_coeff: float = 45,
mrd_loss_coeff: float = 1.0,
pretrain_mel_steps: int = 0,
decay_mel_coeff: bool = False,
evaluate_utmos: bool = False,
evaluate_pesq: bool = False,
evaluate_periodicty: bool = False,
resume: bool = False,
):
super().__init__(
feature_extractor,
backbone,
head,
resume_config,
resume_model,
sample_rate,
initial_learning_rate,
num_warmup_steps,
mel_loss_coeff,
mrd_loss_coeff,
pretrain_mel_steps,
decay_mel_coeff,
evaluate_utmos,
evaluate_pesq,
evaluate_periodicty,
resume
)
# Override with conditional discriminators
# VocosExp.__init__(self, feature_extractor, backbone, head, resume_config, resume_model)
# if self.resume:
# VocosExp.load_from_checkpoint(self.resume_model)
self.multiperioddisc = MultiPeriodDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths))
self.multiresddisc = MultiResolutionDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths))
self.dac = DACDiscriminator()
if self.resume:
print('加载预训练模型:', self.resume_model)
# with open(self.resume_config, "r") as f:
# config = yaml.safe_load(f)
# feature_extractor = instantiate_class(args=(), init=config['model']['init_args']["feature_extractor"])
# backbone = instantiate_class(args=(), init=config['model']['init_args']["backbone"])
# head = instantiate_class(args=(), init=config['model']['init_args']["head"])
# 不加载量化器部分权重
state_dict_raw = torch.load(self.resume_model, map_location=self.device)['state_dict']
state_dict_fa_qa = dict()
state_dict_fa_en = dict()
state_dict_fa_de = dict()
state_dict_bb = dict()
state_dict_hd = dict()
state_dict_mp = dict()
state_dict_mr = dict()
state_dict_dac = dict()
for k, v in state_dict_raw.items():
# breakpoint()
if k.startswith('feature_extractor.encodec.quantizer'):
# breakpoint()
# print("*****",k)
ss = k[46:48]
if ss[-1] == '.':
num = int(ss[0])
# print("num,k",num,k[36:])
if num <= 7:
state_dict_fa_qa[k[36:]] = v
if k.startswith('feature_extractor.encodec.encoder'):
state_dict_fa_en[k[34:]] = v
if k.startswith('feature_extractor.encodec.decoder'):
state_dict_fa_de[k[34:]] = v
if k.startswith('backbone.'):
state_dict_bb[k[9:]] = v
if k.startswith('head.'):
state_dict_hd[k[5:]] = v
if k.startswith('multiperioddisc.'):
state_dict_mp[k[16:]] = v
if k.startswith('multiresddisc.'):
state_dict_mr[k[14:]] = v
if k.startswith('dac.'):
state_dict_dac[k[4:]] = v
# breakpoint()
# feature_extractor.encodec.quantizer.load_state_dict(state_dict_fa_qa, strict=True)
feature_extractor.encodec.encoder.load_state_dict(state_dict_fa_en, strict=True)
feature_extractor.encodec.decoder.load_state_dict(state_dict_fa_de, strict=True)
feature_extractor.encodec.quantizer.load_state_dict(state_dict_fa_qa, strict=True)
backbone.load_state_dict(state_dict_bb, strict=True)
head.load_state_dict(state_dict_hd, strict=True)
self.feature_extractor = feature_extractor.to(self.device)
self.backbone = backbone.to(self.device)
self.head = head.to(self.device)
self.multiperioddisc.load_state_dict(state_dict_mp, strict=True)
self.multiresddisc.load_state_dict(state_dict_mr, strict=True)
self.dac.load_state_dict(state_dict_dac, strict=True)
def training_step(self, *args):
# print('-------------------train--------------------')
# if self.global_rank == 0 and self.resume:
# config_path = self.resume_config
# model_path = self.resume_model
# self.pretrained_load(config_path, model_path)
# print('加载预训练模型:', model_path)
bandwidth_id = torch.randint(low=0, high=len(self.feature_extractor.bandwidths), size=(1,), device=self.device,)
output = super().training_step(*args, bandwidth_id=bandwidth_id)
return output
def validation_step(self, *args):
# print('-------------------valid--------------------')
bandwidth_id = torch.tensor([0], device=self.device)
output = super().validation_step(*args, bandwidth_id=bandwidth_id)
return output
def validation_epoch_end(self, outputs):
if self.global_rank == 0:
*_, audio_in, _ = outputs[0].values()
# Resynthesis with encodec for reference
self.feature_extractor.encodec.set_target_bandwidth(self.feature_extractor.bandwidths[0])
encodec_audio = self.feature_extractor.encodec(audio_in[None, None, :])
self.logger.experiment.add_audio(
"encodec", encodec_audio[0, 0].data.cpu().numpy(), self.global_step, self.hparams.sample_rate,
)
super().validation_epoch_end(outputs)
|