File size: 21,792 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import math

import numpy as np
import pytorch_lightning as pl
import torch
import torchaudio
import transformers
import yaml

from decoder.discriminator_dac import DACDiscriminator

from decoder.discriminators import MultiPeriodDiscriminator, MultiResolutionDiscriminator
from decoder.feature_extractors import FeatureExtractor
from decoder.heads import FourierHead
from decoder.helpers import plot_spectrogram_to_numpy
from decoder.loss import DiscriminatorLoss, GeneratorLoss, FeatureMatchingLoss, MelSpecReconstructionLoss, DACGANLoss
from decoder.models import Backbone
from decoder.modules import safe_log
from decoder.pretrained_model import instantiate_class


class VocosExp(pl.LightningModule):
    # noinspection PyUnusedLocal
    def __init__(
        self,
        feature_extractor: FeatureExtractor,
        backbone: Backbone,
        head: FourierHead,
        resume_config: str,
        resume_model: str,
        sample_rate: int = 24000,
        initial_learning_rate: float = 2e-4,
        num_warmup_steps: int = 0,
        mel_loss_coeff: float = 45,
        mrd_loss_coeff: float = 1.0,
        pretrain_mel_steps: int = 0,
        decay_mel_coeff: bool = False,
        evaluate_utmos: bool = False,
        evaluate_pesq: bool = False,
        evaluate_periodicty: bool = False,
        resume: bool = False,
    ):
        """
        Args:
            feature_extractor (FeatureExtractor): An instance of FeatureExtractor to extract features from audio signals.
            backbone (Backbone): An instance of Backbone model.
            head (FourierHead):  An instance of Fourier head to generate spectral coefficients and reconstruct a waveform.
            sample_rate (int): Sampling rate of the audio signals.
            initial_learning_rate (float): Initial learning rate for the optimizer.
            num_warmup_steps (int): Number of steps for the warmup phase of learning rate scheduler. Default is 0.
            mel_loss_coeff (float, optional): Coefficient for Mel-spectrogram loss in the loss function. Default is 45.
            mrd_loss_coeff (float, optional): Coefficient for Multi Resolution Discriminator loss. Default is 1.0.
            pretrain_mel_steps (int, optional): Number of steps to pre-train the model without the GAN objective. Default is 0.
            decay_mel_coeff (bool, optional): If True, the Mel-spectrogram loss coefficient is decayed during training. Default is False.
            evaluate_utmos (bool, optional): If True, UTMOS scores are computed for each validation run.
            evaluate_pesq (bool, optional): If True, PESQ scores are computed for each validation run.
            evaluate_periodicty (bool, optional): If True, periodicity scores are computed for each validation run.
        """
        super().__init__()
        self.save_hyperparameters(ignore=["feature_extractor", "backbone", "head"])

        self.feature_extractor = feature_extractor
        self.backbone = backbone
        self.head = head

        self.resume_config = resume_config
        self.resume_model = resume_model
        self.resume = resume

        self.multiperioddisc = MultiPeriodDiscriminator()
        self.multiresddisc = MultiResolutionDiscriminator()

        
        self.dac = DACDiscriminator()

        self.dacdiscriminator = DACGANLoss(self.dac)

        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()
        self.feat_matching_loss = FeatureMatchingLoss()
        self.melspec_loss = MelSpecReconstructionLoss(sample_rate=sample_rate)

        self.train_discriminator = False
        self.base_mel_coeff = self.mel_loss_coeff = mel_loss_coeff

    def configure_optimizers(self):
        disc_params = [
            {"params": self.multiperioddisc.parameters()},
            {"params": self.multiresddisc.parameters()},
            {"params": self.dac.parameters()},
        ]
        gen_params = [
            {"params": self.feature_extractor.parameters()},
            {"params": self.backbone.parameters()},
            {"params": self.head.parameters()},
        ]

        opt_disc = torch.optim.AdamW(disc_params, lr=self.hparams.initial_learning_rate)
        opt_gen = torch.optim.AdamW(gen_params, lr=self.hparams.initial_learning_rate)

        max_steps = self.trainer.max_steps // 2  # Max steps per optimizer
        scheduler_disc = transformers.get_cosine_schedule_with_warmup(
            opt_disc, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps,
        )
        scheduler_gen = transformers.get_cosine_schedule_with_warmup(
            opt_gen, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps,
        )

        return (
            [opt_disc, opt_gen],
            [{"scheduler": scheduler_disc, "interval": "step"}, {"scheduler": scheduler_gen, "interval": "step"}],
        )

    def forward(self, audio_input, **kwargs):
        features, _, commit_loss = self.feature_extractor(audio_input, **kwargs)
        # print('1111', self.feature_extractor.state_dict()['encodec.decoder.model.3.convtr.convtr.weight_g'])
        x = self.backbone(features, **kwargs)
        audio_output = self.head(x)
        return audio_output, commit_loss

    def training_step(self, batch, batch_idx, optimizer_idx, **kwargs):
        audio_input = batch

        # train discriminator
        if optimizer_idx == 0 and self.train_discriminator:
            with torch.no_grad():
                audio_hat, _ = self(audio_input, **kwargs)


            loss_dac=self.dacdiscriminator.discriminator_loss(audio_hat.unsqueeze(1),audio_input.unsqueeze(1))

            real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(y=audio_input, y_hat=audio_hat, **kwargs,)
            real_score_mrd, gen_score_mrd, _, _ = self.multiresddisc(y=audio_input, y_hat=audio_hat, **kwargs,)
            loss_mp, loss_mp_real, _ = self.disc_loss(
                disc_real_outputs=real_score_mp, disc_generated_outputs=gen_score_mp
            )
            loss_mrd, loss_mrd_real, _ = self.disc_loss(
                disc_real_outputs=real_score_mrd, disc_generated_outputs=gen_score_mrd
            )
            loss_mp /= len(loss_mp_real)
            loss_mrd /= len(loss_mrd_real)
            loss = loss_mp + self.hparams.mrd_loss_coeff * loss_mrd + loss_dac

            self.log("discriminator/total", loss, prog_bar=True)
            self.log("discriminator/multi_period_loss", loss_mp)
            self.log("discriminator/multi_res_loss", loss_mrd)
            self.log("discriminator/dac", loss_dac)
            return loss

        # train generator
        if optimizer_idx == 1:
            audio_hat, commit_loss = self(audio_input, **kwargs)
            if self.train_discriminator:

                loss_dac_1,loss_dac_2 = self.dacdiscriminator.generator_loss(audio_hat.unsqueeze(1),audio_input.unsqueeze(1))
                _, gen_score_mp, fmap_rs_mp, fmap_gs_mp = self.multiperioddisc(
                    y=audio_input, y_hat=audio_hat, **kwargs,
                )
                _, gen_score_mrd, fmap_rs_mrd, fmap_gs_mrd = self.multiresddisc(
                    y=audio_input, y_hat=audio_hat, **kwargs,
                )
                loss_gen_mp, list_loss_gen_mp = self.gen_loss(disc_outputs=gen_score_mp)
                loss_gen_mrd, list_loss_gen_mrd = self.gen_loss(disc_outputs=gen_score_mrd)
                loss_gen_mp = loss_gen_mp / len(list_loss_gen_mp)
                loss_gen_mrd = loss_gen_mrd / len(list_loss_gen_mrd)
                loss_fm_mp = self.feat_matching_loss(fmap_r=fmap_rs_mp, fmap_g=fmap_gs_mp) / len(fmap_rs_mp)
                loss_fm_mrd = self.feat_matching_loss(fmap_r=fmap_rs_mrd, fmap_g=fmap_gs_mrd) / len(fmap_rs_mrd)

                self.log("generator/multi_period_loss", loss_gen_mp)
                self.log("generator/multi_res_loss", loss_gen_mrd)
                self.log("generator/feature_matching_mp", loss_fm_mp)
                self.log("generator/feature_matching_mrd", loss_fm_mrd)
                self.log("generator/loss_dac_1", loss_dac_1)
                self.log("generator/loss_dac_2", loss_dac_2)
            else:
                loss_gen_mp = loss_gen_mrd = loss_fm_mp = loss_fm_mrd = 0

            mel_loss = self.melspec_loss(audio_hat, audio_input)
            loss = (
                loss_gen_mp
                + self.hparams.mrd_loss_coeff * loss_gen_mrd
                + loss_fm_mp
                + self.hparams.mrd_loss_coeff * loss_fm_mrd
                + self.mel_loss_coeff * mel_loss
                + 1000 * commit_loss
                + loss_dac_1
                + loss_dac_2
            )

            self.log("generator/total_loss", loss, prog_bar=True)
            self.log("mel_loss_coeff", self.mel_loss_coeff)
            self.log("generator/mel_loss", mel_loss)
            self.log("commit_loss", commit_loss)

            if self.global_step % 1000 == 0 and self.global_rank == 0:
                self.logger.experiment.add_audio(
                    "train/audio_in", audio_input[0].data.cpu(), self.global_step, self.hparams.sample_rate
                )
                self.logger.experiment.add_audio(
                    "train/audio_pred", audio_hat[0].data.cpu(), self.global_step, self.hparams.sample_rate
                )
                with torch.no_grad():
                    mel = safe_log(self.melspec_loss.mel_spec(audio_input[0]))
                    mel_hat = safe_log(self.melspec_loss.mel_spec(audio_hat[0]))
                self.logger.experiment.add_image(
                    "train/mel_target",
                    plot_spectrogram_to_numpy(mel.data.cpu().numpy()),
                    self.global_step,
                    dataformats="HWC",
                )
                self.logger.experiment.add_image(
                    "train/mel_pred",
                    plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()),
                    self.global_step,
                    dataformats="HWC",
                )

            return loss

    def on_validation_epoch_start(self):
        if self.hparams.evaluate_utmos:
            from metrics.UTMOS import UTMOSScore

            if not hasattr(self, "utmos_model"):
                self.utmos_model = UTMOSScore(device=self.device)

    def validation_step(self, batch, batch_idx, **kwargs):
        audio_input = batch
        audio_hat, commit_loss = self(audio_input, **kwargs)

        audio_16_khz = torchaudio.functional.resample(audio_input, orig_freq=self.hparams.sample_rate, new_freq=16000)
        audio_hat_16khz = torchaudio.functional.resample(audio_hat, orig_freq=self.hparams.sample_rate, new_freq=16000)

        if self.hparams.evaluate_periodicty:
            from metrics.periodicity import calculate_periodicity_metrics

            periodicity_loss, pitch_loss, f1_score = calculate_periodicity_metrics(audio_16_khz, audio_hat_16khz)
        else:
            periodicity_loss = pitch_loss = f1_score = 0

        if self.hparams.evaluate_utmos:
            utmos_score = self.utmos_model.score(audio_hat_16khz.unsqueeze(1)).mean()
        else:
            utmos_score = torch.zeros(1, device=self.device)

        if self.hparams.evaluate_pesq:
            from pesq import pesq

            pesq_score = 0
            for ref, deg in zip(audio_16_khz.cpu().numpy(), audio_hat_16khz.cpu().numpy()):
                pesq_score += pesq(16000, ref, deg, "wb", on_error=1)
            pesq_score /= len(audio_16_khz)
            pesq_score = torch.tensor(pesq_score)
        else:
            pesq_score = torch.zeros(1, device=self.device)

        mel_loss = self.melspec_loss(audio_hat.unsqueeze(1), audio_input.unsqueeze(1))
        total_loss = mel_loss + (5 - utmos_score) + (5 - pesq_score) + 1000 * commit_loss

        return {
            "val_loss": total_loss,
            "mel_loss": mel_loss,
            "utmos_score": utmos_score,
            "pesq_score": pesq_score,
            "periodicity_loss": periodicity_loss,
            "pitch_loss": pitch_loss,
            "f1_score": f1_score,
            "audio_input": audio_input[0],
            "audio_pred": audio_hat[0],
        }

    def validation_epoch_end(self, outputs):
        if self.global_rank == 0:
            *_, audio_in, audio_pred = outputs[0].values()
            self.logger.experiment.add_audio(
                "val_in", audio_in.data.cpu().numpy(), self.global_step, self.hparams.sample_rate
            )
            self.logger.experiment.add_audio(
                "val_pred", audio_pred.data.cpu().numpy(), self.global_step, self.hparams.sample_rate
            )
            mel_target = safe_log(self.melspec_loss.mel_spec(audio_in))
            mel_hat = safe_log(self.melspec_loss.mel_spec(audio_pred))
            self.logger.experiment.add_image(
                "val_mel_target",
                plot_spectrogram_to_numpy(mel_target.data.cpu().numpy()),
                self.global_step,
                dataformats="HWC",
            )
            self.logger.experiment.add_image(
                "val_mel_hat",
                plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()),
                self.global_step,
                dataformats="HWC",
            )
        avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
        mel_loss = torch.stack([x["mel_loss"] for x in outputs]).mean()
        utmos_score = torch.stack([x["utmos_score"] for x in outputs]).mean()
        pesq_score = torch.stack([x["pesq_score"] for x in outputs]).mean()
        periodicity_loss = np.array([x["periodicity_loss"] for x in outputs]).mean()
        pitch_loss = np.array([x["pitch_loss"] for x in outputs]).mean()
        f1_score = np.array([x["f1_score"] for x in outputs]).mean()

        self.log("val_loss", avg_loss, sync_dist=True)
        self.log("val/mel_loss", mel_loss, sync_dist=True)
        self.log("val/utmos_score", utmos_score, sync_dist=True)
        self.log("val/pesq_score", pesq_score, sync_dist=True)
        self.log("val/periodicity_loss", periodicity_loss, sync_dist=True)
        self.log("val/pitch_loss", pitch_loss, sync_dist=True)
        self.log("val/f1_score", f1_score, sync_dist=True)

    @property
    def global_step(self):
        """
        Override global_step so that it returns the total number of batches processed
        """
        return self.trainer.fit_loop.epoch_loop.total_batch_idx

    def on_train_batch_start(self, *args):
        if self.global_step >= self.hparams.pretrain_mel_steps:
            self.train_discriminator = True
        else:
            self.train_discriminator = False

    def on_train_batch_end(self, *args):
        def mel_loss_coeff_decay(current_step, num_cycles=0.5):
            max_steps = self.trainer.max_steps // 2
            if current_step < self.hparams.num_warmup_steps:
                return 1.0
            progress = float(current_step - self.hparams.num_warmup_steps) / float(
                max(1, max_steps - self.hparams.num_warmup_steps)
            )
            return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))

        if self.hparams.decay_mel_coeff:
            self.mel_loss_coeff = self.base_mel_coeff * mel_loss_coeff_decay(self.global_step + 1)


class WavTokenizer(VocosExp):
    """
    WavTokenizer is a subclass of VocosExp that overrides the parent experiment to function as a conditional GAN.
    It manages an additional `bandwidth_id` attribute, which denotes a learnable embedding corresponding to
    a specific bandwidth value of EnCodec. During training, a random bandwidth_id is generated for each step,
    while during validation, a fixed bandwidth_id is used.
    """

    def __init__(
        self,
        feature_extractor: FeatureExtractor,
        backbone: Backbone,
        head: FourierHead,
        resume_config: str,
        resume_model: str,
        sample_rate: int = 24000,
        initial_learning_rate: float = 2e-4,
        num_warmup_steps: int = 0,
        mel_loss_coeff: float = 45,
        mrd_loss_coeff: float = 1.0,
        pretrain_mel_steps: int = 0,
        decay_mel_coeff: bool = False,
        evaluate_utmos: bool = False,
        evaluate_pesq: bool = False,
        evaluate_periodicty: bool = False,
        resume: bool = False,
    ):
        super().__init__(
            feature_extractor,
            backbone,
            head,
            resume_config,
            resume_model,
            sample_rate,
            initial_learning_rate,
            num_warmup_steps,
            mel_loss_coeff,
            mrd_loss_coeff,
            pretrain_mel_steps,
            decay_mel_coeff,
            evaluate_utmos,
            evaluate_pesq,
            evaluate_periodicty,
            resume
        )
        # Override with conditional discriminators
        # VocosExp.__init__(self, feature_extractor, backbone, head, resume_config, resume_model)
        # if self.resume:
        #     VocosExp.load_from_checkpoint(self.resume_model)
        self.multiperioddisc = MultiPeriodDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths))
        self.multiresddisc = MultiResolutionDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths))
        self.dac = DACDiscriminator()
        if self.resume:
            print('加载预训练模型:', self.resume_model)
            # with open(self.resume_config, "r") as f:
            #     config = yaml.safe_load(f)
            # feature_extractor = instantiate_class(args=(), init=config['model']['init_args']["feature_extractor"])
            # backbone = instantiate_class(args=(), init=config['model']['init_args']["backbone"])
            # head = instantiate_class(args=(), init=config['model']['init_args']["head"])

            # 不加载量化器部分权重
            state_dict_raw = torch.load(self.resume_model, map_location=self.device)['state_dict']
            state_dict_fa_qa = dict()
            state_dict_fa_en = dict()
            state_dict_fa_de = dict()
            state_dict_bb = dict()
            state_dict_hd = dict()
            state_dict_mp = dict()
            state_dict_mr = dict()
            state_dict_dac = dict()
            for k, v in state_dict_raw.items():
                # breakpoint()
                if k.startswith('feature_extractor.encodec.quantizer'):
                    # breakpoint()
                    # print("*****",k)
                    ss = k[46:48]
                    if ss[-1] == '.':
                        num = int(ss[0])
                        # print("num,k",num,k[36:])
                        if num <= 7:
                            state_dict_fa_qa[k[36:]] = v
                if k.startswith('feature_extractor.encodec.encoder'):
                    state_dict_fa_en[k[34:]] = v
                if k.startswith('feature_extractor.encodec.decoder'):
                    state_dict_fa_de[k[34:]] = v
                if k.startswith('backbone.'):
                    state_dict_bb[k[9:]] = v
                if k.startswith('head.'):
                    state_dict_hd[k[5:]] = v
                if k.startswith('multiperioddisc.'):
                    state_dict_mp[k[16:]] = v
                if k.startswith('multiresddisc.'):
                    state_dict_mr[k[14:]] = v
                if k.startswith('dac.'):
                    state_dict_dac[k[4:]] = v
            # breakpoint()
            # feature_extractor.encodec.quantizer.load_state_dict(state_dict_fa_qa, strict=True)
            feature_extractor.encodec.encoder.load_state_dict(state_dict_fa_en, strict=True)
            feature_extractor.encodec.decoder.load_state_dict(state_dict_fa_de, strict=True)
            feature_extractor.encodec.quantizer.load_state_dict(state_dict_fa_qa, strict=True)
            backbone.load_state_dict(state_dict_bb, strict=True)
            head.load_state_dict(state_dict_hd, strict=True)
            self.feature_extractor = feature_extractor.to(self.device)
            self.backbone = backbone.to(self.device)
            self.head = head.to(self.device)
            self.multiperioddisc.load_state_dict(state_dict_mp, strict=True)
            self.multiresddisc.load_state_dict(state_dict_mr, strict=True)
            self.dac.load_state_dict(state_dict_dac, strict=True)

    def training_step(self, *args):
        # print('-------------------train--------------------')
        # if self.global_rank == 0 and self.resume:
        #     config_path = self.resume_config
        #     model_path = self.resume_model
        #     self.pretrained_load(config_path, model_path)
        #     print('加载预训练模型:', model_path)
        bandwidth_id = torch.randint(low=0, high=len(self.feature_extractor.bandwidths), size=(1,), device=self.device,)
        output = super().training_step(*args, bandwidth_id=bandwidth_id)
        return output

    def validation_step(self, *args):
        # print('-------------------valid--------------------')
        bandwidth_id = torch.tensor([0], device=self.device)
        output = super().validation_step(*args, bandwidth_id=bandwidth_id)
        return output

    def validation_epoch_end(self, outputs):
        if self.global_rank == 0:
            *_, audio_in, _ = outputs[0].values()
            # Resynthesis with encodec for reference
            self.feature_extractor.encodec.set_target_bandwidth(self.feature_extractor.bandwidths[0])
            encodec_audio = self.feature_extractor.encodec(audio_in[None, None, :])
            self.logger.experiment.add_audio(
                "encodec", encodec_audio[0, 0].data.cpu().numpy(), self.global_step, self.hparams.sample_rate,
            )

        super().validation_epoch_end(outputs)