Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,586 Bytes
96fe5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
from typing import Tuple, Any, Union, Dict
import torch
import yaml
from huggingface_hub import hf_hub_download
from torch import nn
from inspiremusic.wavtokenizer.decoder.feature_extractors import FeatureExtractor, EncodecFeatures
from inspiremusic.wavtokenizer.decoder.heads import FourierHead
from inspiremusic.wavtokenizer.decoder.models import Backbone
def instantiate_class(args: Union[Any, Tuple[Any, ...]], init: Dict[str, Any]) -> Any:
"""Instantiates a class with the given args and init.
Args:
args: Positional arguments required for instantiation.
init: Dict of the form {"class_path":...,"init_args":...}.
Returns:
The instantiated class object.
"""
kwargs = init.get("init_args", {})
if not isinstance(args, tuple):
args = (args,)
class_module, class_name = init["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(*args, **kwargs)
class WavTokenizer(nn.Module):
"""
The Vocos class represents a Fourier-based neural vocoder for audio synthesis.
This class is primarily designed for inference, with support for loading from pretrained
model checkpoints. It consists of three main components: a feature extractor,
a backbone, and a head.
"""
def __init__(
self, feature_extractor: FeatureExtractor, backbone: Backbone, head: FourierHead,
):
super().__init__()
self.feature_extractor = feature_extractor
self.backbone = backbone
self.head = head
@classmethod
def from_hparams(cls, config_path: str) -> "Vocos":
"""
Class method to create a new Vocos model instance from hyperparameters stored in a yaml configuration file.
"""
with open(config_path, "r") as f:
config = yaml.safe_load(f)
feature_extractor = instantiate_class(args=(), init=config["feature_extractor"])
backbone = instantiate_class(args=(), init=config["backbone"])
head = instantiate_class(args=(), init=config["head"])
model = cls(feature_extractor=feature_extractor, backbone=backbone, head=head)
return model
@classmethod
def from_pretrained(self, repo_id: str) -> "Vocos":
"""
Class method to create a new Vocos model instance from a pre-trained model stored in the Hugging Face model hub.
"""
config_path = hf_hub_download(repo_id=repo_id, filename="config.yaml")
model_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
model = self.from_hparams(config_path)
state_dict = torch.load(model_path, map_location="cpu")
if isinstance(model.feature_extractor, EncodecFeatures):
encodec_parameters = {
"feature_extractor.encodec." + key: value
for key, value in model.feature_extractor.encodec.state_dict().items()
}
state_dict.update(encodec_parameters)
model.load_state_dict(state_dict)
model.eval()
return model
@classmethod
def from_hparams_feat(cls, config_path: str) -> "Vocos":
"""
Class method to create a new Vocos model instance from hyperparameters stored in a yaml configuration file.
"""
with open(config_path, "r") as f:
config = yaml.safe_load(f)
feature_extractor = instantiate_class(args=(), init=config['model']['init_args']["feature_extractor"])
backbone = instantiate_class(args=(), init=config['model']['init_args']["backbone"])
head = instantiate_class(args=(), init=config['model']['init_args']["head"])
model = cls(feature_extractor=feature_extractor, backbone=backbone, head=head)
return model
@classmethod
def from_pretrained_feat(self, config_path, model_path):
"""
Class method to create a new Vocos model instance from a pre-trained model stored in the Hugging Face model hub.
"""
model = self.from_hparams_feat(config_path)
state_dict_raw = torch.load(model_path, map_location="cpu")['state_dict']
state_dict = dict()
for k, v in state_dict_raw.items():
if k.startswith('backbone.') or k.startswith('head.') or k.startswith('feature_extractor.'):
state_dict[k] = v
model.load_state_dict(state_dict)
model.eval()
return model
@classmethod
def estimator(self, config_path, model_path):
"""
Class method to create a new Vocos model instance from a pre-trained model stored in the Hugging Face model hub.
"""
model = self.from_hparams_feat(config_path)
state_dict_raw = torch.load(model_path, map_location="cpu")['state_dict']
state_dict = dict()
for k, v in state_dict_raw.items():
if k.startswith('backbone.') or k.startswith('head.') or k.startswith('feature_extractor.'):
state_dict[k] = v
model.load_state_dict(state_dict)
model.eval()
return model
@classmethod
def from_pretrained0911(self, config_path, model_folder_path):
"""
Class method to create a new Vocos model instance from a pre-trained model stored in the Hugging Face model hub.
"""
model = self.from_hparams0802(config_path)
models = os.listdir(model_folder_path)
val_loss = []
for item in models:
if not item.startswith('vocos_'):
continue
val_loss.append(item[-11:-5])
val_loss.sort()
val_loss = val_loss[:3] # 取前3性能较好的模型平均
state_dict = dict()
state_dicts = []
for item in models:
if not item.startswith('vocos_'):
continue
ll = item[-11:-5]
if ll not in val_loss:
continue
model_path = model_folder_path + '/' + item
state_dict_raw = torch.load(model_path, map_location="cpu")['state_dict']
state_dict_single = dict()
for k, v in state_dict_raw.items():
if k.startswith('backbone.') or k.startswith('head.') or k.startswith('feature_extractor.'):
state_dict_single[k] = v
state_dicts.append(state_dict_single)
for kk in state_dicts[0].keys():
vv = state_dicts[0][kk]
for i in range(1, len(state_dicts)):
ss = state_dicts[i]
vv += ss[kk]
vm = vv/len(state_dicts)
state_dict[kk] = vm
model.load_state_dict(state_dict)
model.eval()
return model
@torch.inference_mode()
def forward(self, audio_input: torch.Tensor, **kwargs: Any) -> torch.Tensor:
"""
Method to run a copy-synthesis from audio waveform. The feature extractor first processes the audio input,
which is then passed through the backbone and the head to reconstruct the audio output.
Args:
audio_input (Tensor): The input tensor representing the audio waveform of shape (B, T),
where B is the batch size and L is the waveform length.
Returns:
Tensor: The output tensor representing the reconstructed audio waveform of shape (B, T).
"""
features, _, _ = self.feature_extractor(audio_input, **kwargs) # 0818
audio_output = self.decode(features, **kwargs)
return audio_output
# 0818
@torch.inference_mode()
def encode(self, audio_input: torch.Tensor, **kwargs: Any) -> torch.Tensor:
features, discrete_codes, _ = self.feature_extractor(audio_input, **kwargs)
return features,discrete_codes
# 0818
@torch.inference_mode()
def encode_infer(self, audio_input: torch.Tensor, **kwargs: Any) -> torch.Tensor:
features, discrete_codes, _ = self.feature_extractor.infer(audio_input, **kwargs)
return features,discrete_codes
@torch.inference_mode()
def infer(self, audio_input: torch.Tensor, **kwargs: Any) -> torch.Tensor:
_, discrete_codes, _ = self.feature_extractor._infer(audio_input, **kwargs)
discrete_codes = discrete_codes.clamp(min=0, max=16383)
return discrete_codes
@torch.inference_mode()
def decode(self, features_input: torch.Tensor, **kwargs: Any) -> torch.Tensor:
"""
Method to decode audio waveform from already calculated features. The features input is passed through
the backbone and the head to reconstruct the audio output.
Args:
features_input (Tensor): The input tensor of features of shape (B, C, L), where B is the batch size,
C denotes the feature dimension, and L is the sequence length.
Returns:
Tensor: The output tensor representing the reconstructed audio waveform of shape (B, T).
"""
x = self.backbone(features_input, **kwargs)
audio_output = self.head(x)
return audio_output
@torch.inference_mode()
def codes_to_features(self, codes: torch.Tensor) -> torch.Tensor:
"""
Transforms an input sequence of discrete tokens (codes) into feature embeddings using the feature extractor's
codebook weights.
Args:
codes (Tensor): The input tensor. Expected shape is (K, L) or (K, B, L),
where K is the number of codebooks, B is the batch size and L is the sequence length.
Returns:
Tensor: Features of shape (B, C, L), where B is the batch size, C denotes the feature dimension,
and L is the sequence length.
"""
assert isinstance(
self.feature_extractor, EncodecFeatures
), "Feature extractor should be an instance of EncodecFeatures"
if codes.dim() == 2:
codes = codes.unsqueeze(1)
n_bins = self.feature_extractor.encodec.quantizer.bins
offsets = torch.arange(0, n_bins * len(codes), n_bins, device=codes.device)
embeddings_idxs = codes + offsets.view(-1, 1, 1)
tmp=torch.cat([vq.codebook for vq in self.feature_extractor.encodec.quantizer.vq.layers],dim=0)
# features = torch.nn.functional.embedding(embeddings_idxs, self.feature_extractor.codebook_weights).sum(dim=0)
features = torch.nn.functional.embedding(embeddings_idxs, tmp).sum(dim=0)
features = features.transpose(1, 2)
return features
|