Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, Optional, Callable, List, Generator | |
import torch | |
from torch import nn | |
from torch.nn.utils.rnn import pad_sequence, unpad_sequence | |
from inspiremusic.utils.common import IGNORE_ID | |
from inspiremusic.transformer.label_smoothing_loss import LabelSmoothingLoss | |
from inspiremusic.utils.common import th_accuracy | |
from torch import Tensor | |
from math import log | |
from einops import rearrange, reduce, repeat | |
import logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
class SinusoidalEmbedding(nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x: Tensor) -> Tensor: | |
device, half_dim = x.device, self.dim // 2 | |
emb = torch.tensor(log(10000) / (half_dim - 1), device=device) | |
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) | |
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j") | |
return torch.cat((emb.sin(), emb.cos()), dim=-1).to(torch.float16) | |
class LLM(torch.nn.Module): | |
def __init__( | |
self, | |
text_encoder_input_size: int, | |
llm_input_size: int, | |
llm_output_size: int, | |
audio_token_size: int, | |
llm: torch.nn.Module, | |
sampling: Callable, | |
text_encoder_conf: Dict = None, | |
length_normalized_loss: bool = True, | |
lsm_weight: float = 0.0, | |
frozen_input_embed: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
self.llm_input_size = llm_input_size | |
self.audio_token_size = audio_token_size | |
# 1. build text token inputs related modules | |
if llm is None: | |
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size) | |
else: | |
self.text_embedding = llm.model.model.embed_tokens | |
if frozen_input_embed: | |
print("Freezing input embedding layer") | |
for p in self.text_embedding.parameters(): | |
p.requires_grad = False | |
self.chorus_embedding = torch.nn.Embedding(5, llm_input_size) # intro, chorus, verse1, verse2 , outro | |
self.text_encoder_conf = text_encoder_conf | |
self.text_encoder = self.build_encoder(text_encoder_conf) | |
self.infer_cfg_ratio = kwargs.get("infer_cfg_ratio", None) | |
logging.info(f"infer_cfg_ratio: {self.infer_cfg_ratio}") | |
self.train_cfg_ratio = kwargs.get("train_cfg_ratio", None) | |
logging.info(f"train_cfg_ratio: {self.train_cfg_ratio}") | |
# 2. build audio token language model related modules | |
self.sos_eos = 0 | |
self.task_id = 1 | |
self.llm_embedding = torch.nn.Embedding(2, llm_input_size) | |
self.llm = llm | |
self.llm_decoder = nn.Linear(llm_output_size, audio_token_size + 1) | |
self.criterion_ce = LabelSmoothingLoss( | |
size=audio_token_size + 1, | |
padding_idx=IGNORE_ID, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
# 3. [Optional] build audio token related modules | |
self.speech_embedding = torch.nn.Embedding(audio_token_size, llm_input_size) | |
self.spk_embed_affine_layer = torch.nn.Linear(192, llm_input_size) | |
self.num_codebooks = 4 | |
# 4. sampling method | |
self.sampling = sampling | |
self.time_embedding = SinusoidalEmbedding(llm_input_size) | |
def cfg_dropout(self, text_token, text_token_len, p): | |
# Classifier-Free Guidance Dropout | |
B = text_token.size(0) | |
num_samples_to_mask = int(p * B) | |
if num_samples_to_mask == 0: | |
num_samples_to_mask = 1 | |
indices_to_mask = torch.randperm(B, device=text_token.device)[:num_samples_to_mask] | |
text_token[indices_to_mask] = 0 | |
text_token_len[indices_to_mask] = 0 | |
return text_token, text_token_len | |
def build_encoder(self, encoder_conf=None): | |
if encoder_conf is None: | |
assert hasattr(self, "encoder_conf"), \ | |
"function param encoder_conf is None and model doesn't has encoder_conf attribute either." | |
encoder_conf = self.encoder_conf | |
encoder_name = encoder_conf.pop("name", "transformer") | |
model = None | |
if encoder_name == "transformer": | |
from inspiremusic.transformer.encoder.conformer_encoder import ConformerEncoder | |
model = ConformerEncoder( | |
**encoder_conf, | |
input_size=self.input_size, | |
use_cnn_module=False, | |
macaron_style=False, | |
) | |
elif encoder_name == "conformer": | |
from inspiremusic.transformer.encoder.conformer_encoder import ConformerEncoder | |
model = ConformerEncoder( | |
**encoder_conf, | |
input_size=self.input_size, | |
) | |
elif encoder_name == "llama_encoder": | |
from inspiremusic.transformer.encoder.llama_encoder import LlamaEncoder | |
model = LlamaEncoder( | |
**encoder_conf, | |
input_size=self.input_size, | |
) | |
elif encoder_name == "qwen2": | |
from inspiremusic.transformer.encoder.qwen_encoder import QwenEncoder | |
model = QwenEncoder( | |
**encoder_conf, | |
input_size=self.input_size, | |
) | |
elif encoder_name == "qwen2.5": | |
from inspiremusic.transformer.encoder.qwen_encoder import QwenEncoder | |
model = QwenEncoder( | |
**encoder_conf, | |
input_size=self.input_size, | |
) | |
encoder_conf["name"] = encoder_name | |
return model | |
def encode(self, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor): | |
if self.text_encoder is not None: | |
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, | |
decoding_chunk_size=1, | |
num_decoding_left_chunks=-1) | |
encoder_out_lens = encoder_mask.squeeze(1).sum(1) | |
encoder_out = self.text_encoder_affine_layer(encoder_out) | |
else: | |
encoder_out, encoder_out_lens = text, text_lengths | |
return encoder_out, encoder_out_lens | |
def pad_unpad_sequence(self, sos_eos_emb, embeddings, text_token, | |
text_token_len, task_id_emb, audio_token, | |
audio_token_len, seg_len): | |
text_token = unpad_sequence(text_token, text_token_len.cpu(), | |
batch_first=True) | |
audio_token = unpad_sequence(audio_token, audio_token_len.cpu(), | |
batch_first=True) | |
for i in range(len(embeddings)): | |
embeddings[i] = unpad_sequence(embeddings[i], seg_len.cpu(), batch_first=True) | |
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0)] + [embedding[i] for embedding in embeddings] + [text_token[i], task_id_emb.squeeze(dim=0), audio_token[i]], dim=0) for i in range(len(text_token))] | |
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) | |
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) | |
return lm_input, lm_input_len | |
def forward( | |
self, | |
batch: dict, | |
device: torch.device, | |
) -> Dict[str, Optional[torch.Tensor]]: | |
""" | |
Args: | |
text: (B, L, D) | |
text_lengths: (B,) | |
audio: (B, T, N) or (B, T) | |
audio_lengths: (B,) | |
""" | |
mask = True | |
text_token = batch['text_token'].to(device) | |
text_token_len = batch['text_token_len'].to(device) | |
if "semantic_token" not in batch: | |
audio_token = batch['acoustic_token'].to(device) | |
audio_token_len = batch['acoustic_token_len'].to(device) | |
audio_token = audio_token.view(audio_token.size(0), -1, self.num_codebooks) | |
audio_token = audio_token[:, :, 0] | |
audio_token_len = (audio_token_len / self.num_codebooks).long() | |
else: | |
audio_token = batch['semantic_token'].to(device) | |
audio_token_len = batch['semantic_token_len'].to(device) | |
time_start = batch['time_start'].to(device) | |
time_end = batch['time_end'].to(device) | |
chorus = batch['chorus'].to(device) | |
# 1. encode text_token | |
if self.train_cfg_ratio > 0: | |
# Classifier-Free Guidance | |
text_token, _ = self.cfg_dropout(text_token, text_token_len, self.train_cfg_ratio) | |
# 2. Time Embedding & chorus embedding | |
text_token = self.text_embedding(text_token) | |
text_token, text_token_len = self.encode(text_token, text_token_len) | |
if mask: | |
time_mask = time_start != -1.0 | |
seg_len = time_mask.sum(-1) | |
time_start = time_start.masked_fill(~time_mask, 0.0) | |
time_end = time_end.masked_fill(~time_mask, 0.0) | |
chorus = chorus.masked_fill(~time_mask, 0) | |
time_start_embed = self.time_embedding(time_start.view(-1)).to(text_token.dtype) | |
time_end_embed = self.time_embedding(time_end.view(-1)).to(text_token.dtype) | |
time_start_embed = time_start_embed.view(chorus.size(0), chorus.size(1), -1) | |
time_end_embed = time_end_embed.view(chorus.size(0), chorus.size(1), -1) | |
chorus_embed = self.chorus_embedding(chorus) | |
lm_target = [torch.tensor([IGNORE_ID] * (1 + 3 * seg_len[i] + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))] | |
else: | |
time_start_embed = self.time_embedding(time_start).to(text_token.dtype) | |
time_end_embed = self.time_embedding(time_end).to(text_token.dtype) | |
chorus_embed = self.chorus_embedding(chorus) | |
lm_target = [torch.tensor( | |
[IGNORE_ID] * (4 + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))] | |
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device) | |
# 3. eos and task_id | |
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
# 4. encode audio_token | |
audio_token = self.speech_embedding(audio_token) | |
# 5. unpad and pad | |
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, | |
[time_start_embed, | |
time_end_embed, | |
chorus_embed], | |
text_token, | |
text_token_len, | |
task_id_emb, | |
audio_token, | |
audio_token_len, | |
seg_len) | |
# 6. run lm forward | |
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) | |
logits = self.llm_decoder(lm_output) | |
loss = self.criterion_ce(logits, lm_target) | |
acc = th_accuracy(logits.view(-1, self.audio_token_size + 1), lm_target, ignore_label=IGNORE_ID) | |
return {'loss': loss, 'acc': acc} | |
def sampling_ids( | |
self, | |
weighted_scores: torch.Tensor, | |
decoded_tokens: List, | |
ignore_eos: bool = True, | |
): | |
top_ids = self.sampling(weighted_scores, decoded_tokens) | |
return top_ids | |
def inference( | |
self, | |
text: torch.Tensor, | |
text_len: torch.Tensor, | |
audio_token: torch.Tensor, | |
audio_token_len: torch.Tensor, | |
prompt_text: torch.Tensor, | |
prompt_text_len: torch.Tensor, | |
prompt_audio_token: torch.Tensor, | |
prompt_audio_token_len: torch.Tensor, | |
embeddings: List, | |
duration_to_gen: float = 300, | |
task: str = "continuation", | |
token_rate: int = 75, | |
limit_audio_prompt_len: int = 5, | |
) -> Generator[torch.Tensor, None, None]: | |
device = text.device | |
if text is not None: | |
text = torch.concat([prompt_text, text], dim=1) | |
text_len += prompt_text_len | |
infer_cfg = self.infer_cfg_ratio >= 0.0 | |
if infer_cfg: | |
text_cfg = self.text_embedding(text.new_zeros(text.shape)) | |
text = self.text_embedding(text) | |
# 1. encode text | |
text, text_len = self.encode(text, text_len) | |
# 2. encode embedding | |
if embeddings is not None: | |
time_start, time_end, chorus = embeddings | |
if len(chorus.shape) == 1: | |
time_start_embed = self.time_embedding(time_start).reshape(1, 1, -1) # .half() | |
time_end_embed = self.time_embedding(time_end).reshape(1, 1, -1) # .half() | |
chorus_embed = self.chorus_embedding(chorus).reshape(1, 1, -1) # .half() | |
else: | |
time_start_embed = self.time_embedding( | |
time_start.view(-1)).reshape(1, chorus.size(1), -1) # .half() | |
time_end_embed = self.time_embedding(time_end.view(-1)).reshape(1, chorus.size(1), -1) # .half() | |
chorus_embed = self.chorus_embedding(chorus) # .half() | |
# 3. concat llm_input | |
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
if audio_token_len: | |
audio_token = audio_token[:, :(limit_audio_prompt_len * token_rate)] | |
audio_token_emb = self.speech_embedding(audio_token) | |
else: | |
audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) | |
if prompt_audio_token_len: | |
prompt_audio_token_emb = self.speech_embedding(prompt_audio_token) | |
else: | |
prompt_audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) | |
# Check if removing prompt audio token will fail decoding. | |
if task == "continuation": | |
lm_input = torch.concat( | |
[sos_eos_emb, time_start_embed, time_end_embed, | |
chorus_embed, text, task_id_emb, audio_token_emb], dim=1) | |
if infer_cfg: | |
audio_cfg = self.speech_embedding( | |
audio_token.new_zeros(audio_token.shape)) | |
lm_cf_input = torch.concat( | |
[sos_eos_emb, torch.rand_like(time_start_embed), | |
torch.rand_like(time_end_embed), | |
torch.rand_like(chorus_embed), text_cfg, task_id_emb, | |
audio_cfg], dim=1) | |
lm_input = torch.cat([lm_input, lm_cf_input], 0) | |
else: | |
lm_input = torch.concat( | |
[sos_eos_emb, time_start_embed, time_end_embed, | |
chorus_embed, text, task_id_emb], dim=1) | |
if infer_cfg: | |
lm_cf_input = torch.concat( | |
[sos_eos_emb, torch.rand_like(time_start_embed), | |
torch.rand_like(time_end_embed), | |
torch.rand_like(chorus_embed), text_cfg, task_id_emb], | |
dim=1) | |
lm_input = torch.cat([lm_input, lm_cf_input], 0) | |
# 4. cal min/max_length | |
min_len = 0.9 * duration_to_gen * token_rate | |
max_len = duration_to_gen * token_rate | |
logging.info( | |
f"LLM generation sequence length: {max_len}, generate audio length {duration_to_gen}s.") | |
# 5. step by step decode | |
out_tokens = [] | |
offset = 0 | |
state = None | |
for i in range(int(max_len)): | |
y_pred, _, state = self.llm.forward_one_step(lm_input, torch.ones(lm_input.shape[0], lm_input.shape[1], device=lm_input.device).to(torch.bool), cache=state) | |
logits = self.llm_decoder(y_pred[:, -1]) | |
if infer_cfg: | |
# perform context free guidance | |
logits_cf = logits[1] | |
logits = logits[0] | |
infer_cfg_ratio = self.infer_cfg_ratio | |
logits = infer_cfg_ratio * logits + (1 - infer_cfg_ratio) * logits_cf | |
logp = logits.log_softmax(dim=-1) | |
logp = logp.squeeze(dim=0) | |
if i < int(min_len): | |
logp[self.audio_token_size] = torch.tensor(float('-inf'), dtype=torch.float16) | |
if i < int(min_len): | |
logp[self.audio_token_size] = torch.tensor(float('-inf'), dtype=torch.float16) | |
top_ids = self.sampling_ids(logp, out_tokens, ignore_eos=i < min_len).item() | |
if top_ids == self.audio_token_size: | |
break | |
# # in stream mode, yield token one by one | |
yield torch.tensor([[top_ids]], dtype=torch.int64, device=device) | |
out_tokens.append(top_ids) | |
offset += lm_input.size(1) | |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) | |
if infer_cfg: | |
lm_input = lm_input.repeat(2, 1, 1) | |