Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import requests | |
from tqdm import tqdm | |
import torch | |
import numpy as np | |
import laion_clap | |
from clap_module.factory import load_state_dict | |
import librosa | |
import pyloudnorm as pyln | |
# following documentation from https://github.com/LAION-AI/CLAP | |
def int16_to_float32(x): | |
return (x / 32767.0).astype(np.float32) | |
def float32_to_int16(x): | |
x = np.clip(x, a_min=-1., a_max=1.) | |
return (x * 32767.).astype(np.int16) | |
def clap_score(id2text, audio_path, audio_files_extension='.wav', clap_model='music_audioset_epoch_15_esc_90.14.pt'): | |
""" | |
Cosine similarity is computed between the LAION-CLAP text embedding of the given prompt and | |
the LAION-CLAP audio embedding of the generated audio. LION-CLAP: https://github.com/LAION-AI/CLAP | |
This evaluation script assumes that audio_path files are identified with the ids in id2text. | |
clap_score() evaluates all ids in id2text. | |
GPU-based computation. | |
Select one of the following models from https://github.com/LAION-AI/CLAP: | |
- music_speech_audioset_epoch_15_esc_89.98.pt (used by musicgen) | |
- music_audioset_epoch_15_esc_90.14.pt | |
- music_speech_epoch_15_esc_89.25.pt | |
- 630k-audioset-fusion-best.pt (our default, with "fusion" to handle longer inputs) | |
Params: | |
-- id2text: dictionary with the mapping between id (generated audio filenames in audio_path) | |
and text (prompt used to generate audio). clap_score() evaluates all ids in id2text. | |
-- audio_path: path where the generated audio files to evaluate are available. | |
-- audio_files_extension: files extension (default .wav) in eval_path. | |
-- clap_model: choose one of the above clap_models (default: '630k-audioset-fusion-best.pt'). | |
Returns: | |
-- CLAP-LION score | |
""" | |
# load model | |
if clap_model == 'music_speech_audioset_epoch_15_esc_89.98.pt': | |
url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/music_speech_audioset_epoch_15_esc_89.98.pt' | |
clap_path = 'CLAP/music_speech_audioset_epoch_15_esc_89.98.pt' | |
model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cuda') | |
elif clap_model == 'music_audioset_epoch_15_esc_90.14.pt': | |
url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/music_audioset_epoch_15_esc_90.14.pt' | |
clap_path = 'CLAP/music_audioset_epoch_15_esc_90.14.pt' | |
model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cuda') | |
elif clap_model == 'music_speech_epoch_15_esc_89.25.pt': | |
url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/music_speech_epoch_15_esc_89.25.pt' | |
clap_path = 'CLAP/music_speech_epoch_15_esc_89.25.pt' | |
model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cuda') | |
elif clap_model == '630k-audioset-fusion-best.pt': | |
url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/630k-audioset-fusion-best.pt' | |
clap_path = 'CLAP/630k-audioset-fusion-best.pt' | |
model = laion_clap.CLAP_Module(enable_fusion=True, device='cuda') | |
else: | |
raise ValueError('clap_model not implemented') | |
# download clap_model if not already downloaded | |
if not os.path.exists(clap_path): | |
print('Downloading ', clap_model, '...') | |
os.makedirs(os.path.dirname(clap_path), exist_ok=True) | |
response = requests.get(url, stream=True) | |
total_size = int(response.headers.get('content-length', 0)) | |
with open(clap_path, 'wb') as file: | |
with tqdm(total=total_size, unit='B', unit_scale=True) as progress_bar: | |
for data in response.iter_content(chunk_size=8192): | |
file.write(data) | |
progress_bar.update(len(data)) | |
# fixing CLAP-LION issue, see: https://github.com/LAION-AI/CLAP/issues/118 | |
pkg = load_state_dict(clap_path) | |
pkg.pop('text_branch.embeddings.position_ids', None) | |
model.model.load_state_dict(pkg) | |
model.eval() | |
if not os.path.isdir(audio_path): | |
raise ValueError(f'audio_path: {audio_path} does not exist') | |
if id2text: | |
print('[EXTRACTING TEXT EMBEDDINGS] ') | |
batch_size = 64 | |
text_emb = {} | |
for i in tqdm(range(0, len(id2text), batch_size)): | |
batch_ids = list(id2text.keys())[i:i+batch_size] | |
batch_texts = [id2text[id] for id in batch_ids] | |
with torch.no_grad(): | |
embeddings = model.get_text_embedding(batch_texts, use_tensor=True) | |
for id, emb in zip(batch_ids, embeddings): | |
text_emb[id] = emb | |
else: | |
raise ValueError('Must specify id2text') | |
print('[EVALUATING GENERATIONS] ', audio_path) | |
score = 0 | |
count = 0 | |
for id in tqdm(id2text.keys()): | |
file_path = os.path.join(audio_path, str(id)+audio_files_extension) | |
if os.path.isfile(file_path): | |
with torch.no_grad(): | |
audio, _ = librosa.load(file_path, sr=48000, mono=True) # sample rate should be 48000 | |
audio = pyln.normalize.peak(audio, -1.0) | |
audio = audio.reshape(1, -1) # unsqueeze (1,T) | |
audio = torch.from_numpy(int16_to_float32(float32_to_int16(audio))).float() | |
audio_embeddings = model.get_audio_embedding_from_data(x = audio, use_tensor=True) | |
cosine_sim = torch.nn.functional.cosine_similarity(audio_embeddings, text_emb[id].unsqueeze(0), dim=1, eps=1e-8)[0] | |
print(f"{id} | CLAP score = {cosine_sim}") | |
score += cosine_sim | |
count += 1 | |
return score / count if count > 0 else 0 | |