Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple, List | |
import torch | |
from torch import nn | |
from torch.nn import Conv2d | |
from torch.nn.utils import weight_norm | |
class MultiPeriodDiscriminator(nn.Module): | |
""" | |
Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan. | |
Additionally, it allows incorporating conditional information with a learned embeddings table. | |
Args: | |
periods (tuple[int]): Tuple of periods for each discriminator. | |
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. | |
Defaults to None. | |
""" | |
def __init__(self, periods: Tuple[int] = (2, 3, 5, 7, 11), num_embeddings: int = None): | |
super().__init__() | |
self.discriminators = nn.ModuleList([DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods]) | |
def forward( | |
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorP(nn.Module): | |
def __init__( | |
self, | |
period: int, | |
in_channels: int = 1, | |
kernel_size: int = 5, | |
stride: int = 3, | |
lrelu_slope: float = 0.1, | |
num_embeddings: int = None, | |
): | |
super().__init__() | |
self.period = period | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm(Conv2d(in_channels, 32, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(1024, 1024, (kernel_size, 1), (1, 1), padding=(kernel_size // 2, 0))), | |
] | |
) | |
if num_embeddings is not None: | |
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=1024) | |
torch.nn.init.zeros_(self.emb.weight) | |
self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
self.lrelu_slope = lrelu_slope | |
def forward( | |
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
x = x.unsqueeze(1) | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = torch.nn.functional.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for i, l in enumerate(self.convs): | |
x = l(x) | |
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
if i > 0: | |
fmap.append(x) | |
if cond_embedding_id is not None: | |
emb = self.emb(cond_embedding_id) | |
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
else: | |
h = 0 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x += h | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiResolutionDiscriminator(nn.Module): | |
def __init__( | |
self, | |
resolutions: Tuple[Tuple[int, int, int]] = ((1024, 256, 1024), (2048, 512, 2048), (512, 128, 512)), | |
num_embeddings: int = None, | |
): | |
""" | |
Multi-Resolution Discriminator module adapted from https://github.com/mindslab-ai/univnet. | |
Additionally, it allows incorporating conditional information with a learned embeddings table. | |
Args: | |
resolutions (tuple[tuple[int, int, int]]): Tuple of resolutions for each discriminator. | |
Each resolution should be a tuple of (n_fft, hop_length, win_length). | |
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. | |
Defaults to None. | |
""" | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorR(resolution=r, num_embeddings=num_embeddings) for r in resolutions] | |
) | |
def forward( | |
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorR(nn.Module): | |
def __init__( | |
self, | |
resolution: Tuple[int, int, int], | |
channels: int = 64, | |
in_channels: int = 1, | |
num_embeddings: int = None, | |
lrelu_slope: float = 0.1, | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.lrelu_slope = lrelu_slope | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)), | |
] | |
) | |
if num_embeddings is not None: | |
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) | |
torch.nn.init.zeros_(self.emb.weight) | |
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1))) | |
def forward( | |
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
fmap = [] | |
x = self.spectrogram(x) | |
x = x.unsqueeze(1) | |
for l in self.convs: | |
x = l(x) | |
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
fmap.append(x) | |
if cond_embedding_id is not None: | |
emb = self.emb(cond_embedding_id) | |
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
else: | |
h = 0 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x += h | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: | |
n_fft, hop_length, win_length = self.resolution | |
magnitude_spectrogram = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
window=None, # interestingly rectangular window kind of works here | |
center=True, | |
return_complex=True, | |
).abs() | |
return magnitude_spectrogram | |